Practical Failure Analysis

, Volume 1, Issue 2, pp 83–92 | Cite as

Strain-aging in highly worked 316L stainless steel

  • S. L. Robinson
  • B. C. Odegard
  • N. R. Moody
  • S. H. Goods
  • M. Chiesa
  • B. A. Meyer
Peer Reviewed Articles


The room temperature burst pressure of 316L stainless steel burst discs exhibited increases of about 10% over 90 days. This increase may be associated with a strain-aging phenomenon requiring the presence of carbon since tensile property instability in worked austenitic stainless steels has been reported.[1–5] The cold worked material directly beneath the score root on the burst disc could undergo the strain aging process, thus causing the observed increase in burst strength. Characterization and analysis were therefore undertaken to identify the controlling phenomena in the small heterogeneous volume that controls rupture of the burst disc. Optical metallography and magnetic measurements confirmed the presence of martensite. Nanoindentation hardness measurements were correlated with finite element simulation of the as-formed mechanical properties. A representative portion of the microstructure was then recreated through cold rolling, and subjected to real-time and accelerated thermal aging treatments and mechanical activation analysis. Saturation of strengthening was observed, and a low temperature martensite reversion anneal was found to prevent or reverse the aging process. The results are consistent with previous observations of strain aging, although in this instance the effects are observed over a 10,000-fold greater aging time. Aging mechanisms are discussed, incorporating the phenomenologies of activation enthalpy and aging kinetics. A model explaining the sensitivity of aging rate to extreme cold work-induced dislocation densities and cold work-induced vacancy content is proposed.


cold work stainless steel strain aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.S.B. Rose and S.G. Glover:Acta Metall., 1966, vol. 14, p. 1505.CrossRefGoogle Scholar
  2. 2.
    C.F. Jenkins and G.V. Smith:Trans. Met. Soc. AIME, 1969, vol. 245, p. 2149.Google Scholar
  3. 3.
    S.P. Hannula, M.A. Korhonen, and C.Y. Li:Metall. Trans. A, 1986, vol. 17A, p. 1757.Google Scholar
  4. 4.
    S.K. Ray, K.G. Samuel, and P. Rodriguez:Scr. Metall. Mater., 1992, vol. 27, p. 271.CrossRefGoogle Scholar
  5. 5.
    M.G. Ulitchney and R. Gibala:Metall. Trans., 1973, vol. 4, p. 497.CrossRefGoogle Scholar
  6. 6.
    M. Chiesa: Sandia National Laboratories, Livermore, CA, 2000.Google Scholar
  7. 7.
    W.D. Nix and A.H. Gao:J. Mech. Phys. Solids, 1998, vol. 46, p. 411.CrossRefGoogle Scholar
  8. 8.
    V. Shrinivas, S.K. Varma, and L.E. Murr:Metall. Trans. A, 1995, vol. 26A, p. 661.CrossRefGoogle Scholar
  9. 9.
    P. Feltham, G. Lehmann, and R. Moisel:Acta Metall., 1969, vol. 17, p. 1305CrossRefGoogle Scholar
  10. 10.
    M.E. Fine:Phase Transformation in Condensed Solids, McMillan, New York, NY, 1964.Google Scholar
  11. 11.
    F.S. Ham:J. Appl. Phys., 1959, vol. 30, pp. 915–26, 1518.CrossRefGoogle Scholar
  12. 12.
    L.E. Murr and F.I. Grace:Trans. AIME, 1969, vol. 245, p. 2225.Google Scholar
  13. 13.
    C. Donadille, R. Valle, P. Dervin, and R. Penelle:Acta Metall., 1989, vol. 37, pp. 1547–71.CrossRefGoogle Scholar
  14. 14.
    D. Hughes: private communication, Sandia National Laboratories, Livermore, CA.Google Scholar
  15. 15.
    S.L. Robinson and N.Y.C. Yang: Proceedings of The Fourth Topical Conference on Tritium Technology, Sept. 29–Oct. 4, Albuquerque New Mexico,Fusion Technology, 1992, vol. 21, no. 2, part 2, p. 856.Google Scholar
  16. 16.
    Q. Ma and D.R. Clarke:J. Mater. Res., 1995, vol. 10, p. 853.CrossRefGoogle Scholar
  17. 17.
    C.E. Birchenall and R.F. Mehl:Trans. Am. Inst. Min. Eng., 1947, vol. 171, p. 143.Google Scholar
  18. 18.
    R.B. McLellan and M.L. Wasz,J. Phys. Chem. Solids, 1990, vol. 31, p. 523.CrossRefGoogle Scholar
  19. 19.
    D. Zang and R.B. McLellan,Acta Mater., 1999, vol. 47, p. 1671.CrossRefGoogle Scholar

Copyright information

© ASM International - The Materials Information Society 2001

Authors and Affiliations

  • S. L. Robinson
    • 1
  • B. C. Odegard
    • 1
  • N. R. Moody
    • 1
  • S. H. Goods
    • 1
  • M. Chiesa
    • 1
  • B. A. Meyer
    • 2
  1. 1.Sandia National LaboratoriesLivermore
  2. 2.Los Alamos National LaboratoryLos Alamos

Personalised recommendations