Skip to main content
Log in

Hypoxia increases plasma glutathione disulfide in rats

  • Published:
Lung Aims and scope Submit manuscript

Abstract

We tested the hypothesis that hypoxia causes cellular oxidative stress by measuring plasma concentrations of glutathione disulfide (GSSG) in rats exposed to acute and subacute hypoxia. In awake, unanesthetized, catheter-implanted rats, exposure to 8% O2 for 10 min caused pulmonary vasoconstriction and increased plasma GSSG. This increase in plasma GSSG was reversible upon re-exposure to room air. In another group of rats exposed to 48 hours of hypobaric hypoxia (Pb 450 mmHg, equivalent to about 14,500 feet altitude), plasma GSSG, but not total glutathione, was significantly increased over control values (2.83±0.24 vs 1.84±0.14 nmol/ml,p<0.05). While lung tissue GSSG in high altitude-exposed rats were somewhat higher than in controls (17.4±7.0 vs 11.9±3.6 nmol/g wet lung wt.), the difference was not statistically significant. Treatment of the rats with a radical scavenger, DMSO, before altitude exposure, blocked the increase in plasma GSSG (1.86±0.16 nmol/ml). We conclude that both acute and subacute hypoxia increase plasma GSSG in rats and speculate that hypoxia induces cellular oxidative stress in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JD Jr., Lauterburg BH, Mitchell JR (1983) Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J. Pharm. Exp. Ther. 227:749–754.

    CAS  Google Scholar 

  2. Adams JD Jr., Lauterburg BH, Mitchell JR (1984) Plasma glutathione disulfide as an index of oxidant stress in vivo: effects of carbon tetrachloride, dimethylnitrosamine, nitrofurantoin, metronidazole, doxorubicin and diquat. Res. Comm. Chem. Path. Pharm. 46:401–410

    CAS  Google Scholar 

  3. Akerboom TPM, Bilzer M, Sies H (1982) The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in perfused rat liver. J. Biol. Chem. 257:4248–4252

    PubMed  CAS  Google Scholar 

  4. Beilke MA, Collins-Lech C, Sohnle PG (1987) Effects of dimethyl sulfoxide on the oxidative function of human neutrophils. J. Lab. Clin. Med. 110:91–96

    PubMed  CAS  Google Scholar 

  5. Berend N (1984) Protective effect of hypoxia on bleomycin lung toxicity in the rat. Am. Rev. Respir. Dis. 130:307–308

    PubMed  CAS  Google Scholar 

  6. Berggren M, Dawson J, Moldeus P (1984) Glutathione biosynthesis in the isolated perfused rat lung: utilization of extracellular glutathione. FEBS Letter. 176:189–192

    Article  CAS  Google Scholar 

  7. Block ER, Patel JM (1988) Mechanism of hypoxic injury to pulmonary endothelial cell plasma membranes. Am. Rev. Respir. Dis. 137:325 (Abstract)

    Google Scholar 

  8. Brauer RW, Parrish DE, Way RO, Pratt PC, Pessotti R (1970) Protection by altitude acclimatization against lung damage from exposure to oxygen at 825 mmHg. J. Appl Physiol. 28:474–481

    PubMed  CAS  Google Scholar 

  9. Chang S, Feddersen CO, Henson PM, Voelkel NF (1987) Platelet-activating factor mediates hemodynamic changes and lung injury in endotoxin-treated rats. J. Clin. Invest. 79:1498–1509

    PubMed  CAS  Google Scholar 

  10. Chang S, Lauterberg BH, Voelkel NF (1988) Endotoxin causes neutrophil-independent oxidative stress in rats. J. Appl Physiol. 65:358–367

    PubMed  CAS  Google Scholar 

  11. Cummings SW, Hill KE, Burk RF, Zieglert DM (1986) The effect of hypoxia on release of glutathione by the isolated perfused rat liver. Fed. Proc. 46:216 (Abstract)

    Google Scholar 

  12. Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol. Scand. (Suppl 492):91–119

    Google Scholar 

  13. Frank L (1982) Protection from O2 toxicity by pre-exposure to hypoxia: lung antioxidant enzyme role. J. Appl. Physiol. 53:457–482

    Article  Google Scholar 

  14. Hultgren JN (1978) High altitude pulmonary edema. In: Staub NC, ed. Lung water and solute exchange. New York: Marcel Dekker, 437–469

    Google Scholar 

  15. Ishikawa T, Sies H (1984) Cardiac transport of glutathione disulfide and S-conjugate. J. Biol. Chem. 259:3838–3843

    PubMed  CAS  Google Scholar 

  16. Jenkinson SG, Spence TH Jr., Lawrence RA, Hill KE, Duncan CA, Johnson KH (1987) Rat lung glutathione release: response to ocidative stress and selenium deficiency. J. Appl. Physiol. 1987; 62:55–60

    Article  PubMed  CAS  Google Scholar 

  17. Joshi UM, Prasada Rao KS, Mehendale HM (1986) Glutathione status in constituted physiological fluid containing bovine serum albumin. Fed. Proc. 45:932 (Abstract)

    Google Scholar 

  18. Kosower NS, Kosower EM (1974) Effect of GSSG on protein synthesis. In: Flohe L, Benohr H, Sies H, Waller HD, Wendel A, eds. Glutathione. Stuttgart: Georg Thieme, 276–286

    Google Scholar 

  19. Misra HP, Fridovich I (1972) The univalent reduction of oxygen by reduced flavins and quinones. J. Biol. Chem. 247:188–192

    PubMed  CAS  Google Scholar 

  20. Rotta A, Canepa A, Hurtado A, Velasquez T, Chavez R (1956) Pulmonary circulation at sea level and at high altitude. J. Appl. Physiol. 9:328–336

    PubMed  Google Scholar 

  21. Schoene RB, Hackett PH, Henderson WR, Sage EH, Chow M, Roach RC, Mills WJ Jr., Martin TR (1986) High altitude pulmonary edema. Characteristics of lung lavage fluid. J. Am. Med. Assoc. 256:63–69

    Article  CAS  Google Scholar 

  22. Sjostrom K, Crapo JD (1983) Structural and biochemical adaptive changes in rat lungs after exposure to hypoxia. Lab Invest. 48:68–79

    PubMed  CAS  Google Scholar 

  23. Srivastava SK, Beutler E (1969) The transport of oxidized glutathione from human erythrocytes. J. Biol. Chem. 244:9–16

    PubMed  CAS  Google Scholar 

  24. Stelzner TJ, Chang S, Voelkel NF, Weil JV (1987) DMSO prevents increases in pulmonary transvascular protein escape and plasma GSSG in hypoxia. Am. Rev. Respir. Dis. 135:A264 (Abstract)

  25. Stelzner TJ, O’Brien RF, Sato K, Weil JV (1988) Hypoxia-induced increases in pulmonary transvascular protein escape in rats: Modulation by glucocorticoids. J. Clin. Invest. 82:1840–1847

    Article  PubMed  CAS  Google Scholar 

  26. Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27:502–522

    Article  PubMed  CAS  Google Scholar 

  27. White CW, Mimmack RF, Repine JE (1986) Accumulation of lung tissue oxidized glutathione (GSSG) as a marker of oxidant-induced lung injury. Chest 89:111S-113S

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SW., Stelzner, T.J., Weil, J.V. et al. Hypoxia increases plasma glutathione disulfide in rats. Lung 167, 269–276 (1989). https://doi.org/10.1007/BF02714956

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714956

Key words

Navigation