Skip to main content
Log in

Lung function, maximum and submaximum exercise testing in COPD patients: Reproducibility over a long interval

  • Published:
Lung Aims and scope Submit manuscript

Abstract

This study was designed to investigate the reproducibility and clinical relevance of several lung function and exercise test indices in a sample of patients with stable severe chronic obstructive pulmonary disease (COPD).

Twenty subjects (ages 67.8±2.0 years, forced expiratory volume in 1s, [FEV1] 39.7±2.8% predicted) receiving conventional medical therapy and pulmonary rehabilitation were tested 4 times at 1 month intervals. Testing procedures included lung function (inspiratory vital capacity [IVC], FEV1, plethysmographic functional residual capacity [FRC], specific conductance of the airways (sGaw), single breath transfer factor divided by the alveolar volume [TL/VA]); incremental, progressive, symptom-limited, cycle exercise (maximum work load [\(\dot V\) max], maximum heart rate [HRmax], maximum ventilation [\(\dot V\) Emax], maximum oxygen uptake [\(\dot V\) O2max]); and 2 modes of submaximum exercise (12 min walking test [12 MWD] and endurance cycle test). The mean of the absolute value of the individual patient, session-to-session, variation was found to be 0.131 for FEV1, 102 ml/min for\(\dot V\) O2max. The within-subject variability was the smallest for HRmax and IVC (mean intrasubject coefficient of variation, [\(\overline {CV} \) intra] 5.0 and 6.5%) and the greatest for TL/VA, the work performed during the endurance cycle test (EW) and sGaw (\(\underline {VA} \) intra 16.5, 19.4, and 22.7%), while it was reasonably low (8.1–10.2%) for all the other variables studied. Calculation of the F ratio of the intersubject variance to the residual (total minus intersubject) variance, interpreted as a signal-to-noise ratio, yielded the following, in decreasing order: TL/VA, EW,\(\dot V\) Emax,\(\dot V\) O2max, IVC, FEV1, HRmax,\(\dot V\) max, sGaw, 12 MWD, FRC. If we assume that a useful variable should combine a low within-subject variability (\(\overline {CV} \) intra ≤10%) with a high signal-to-noise ratio, we conclude that, among all the variables studied, IVC, FEV1,\(\dot V\) Emax, and\(\dot V\) O2max are those with the greatest clinical potential for functional assessment in patients with COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becklake MR, Leclerc M, Strobach H, Swift J (1975) The N2 closing volume test in population studies: sources of variation and reproducibility. Am Rev Respir Dis 111:141–147

    PubMed  CAS  Google Scholar 

  2. Belman MJ, Mittman C (1980) Ventilatory muscle training improves exercise capacity in chronic obstructive pulmonary disease patients. Am Rev Respir Dis 121:273–280

    PubMed  CAS  Google Scholar 

  3. Brown SE, Fischer CE, Stansbury DW, Light RW (1985) Reproducibility of VO2max in patients with chronic air-flow obstruction. Am Rev Respir Dis 131:435–438

    PubMed  CAS  Google Scholar 

  4. Cara M (1953) Bases physiques pour un essai de mécanique ventilatoire avec application à la cinésithérapie. Poumon 9:406–411

    Google Scholar 

  5. Carter R, Peavler M, Zinkgraf S, Williams J, Fields S (1987) Predicting maximal exercise ventilation in patients with chronic obstructive pulmonary disease. Chest 92:253–259

    PubMed  CAS  Google Scholar 

  6. Chen HI, Dukes R, Martin BJ (1985) Inspiratory muscle training in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 131:251–255

    PubMed  CAS  Google Scholar 

  7. Cochrane GM, Prieto F, Clark TJH (1977) Intrasubject variability of maximal expiratory flow volume curve. Thorax 32:171–176

    PubMed  CAS  Google Scholar 

  8. Dillard TA, Piantadosi S, Rajagopal KR (1985) Prediction of ventilation at maximal exercise in chronic air-flow obstruction. Am Rev Respir Dis 132:230–235

    PubMed  CAS  Google Scholar 

  9. Dillard TA (1987) Ventilatory limitation of exercise. Prediction in COPD. Chest 92:195–196

    PubMed  CAS  Google Scholar 

  10. Gandevia B, Hugh-Jones P (1957) Terminology for measurements of ventilatory capacity. Thorax 12:290–293

    PubMed  CAS  Google Scholar 

  11. Gayrard P, Orebek J (1984) Mesure d’un effet bronchodilatateur par le VEMS: comment l’exprimer? Rev Mal Respir 1:81–84

    PubMed  CAS  Google Scholar 

  12. Groth S, Dirksen A, Dirksen H, Rossing N (1986) Intraindividual variation and effect of learning in lung function examinations: A population study. Bull Eur Physiopathol Respir 22:35–42

    PubMed  CAS  Google Scholar 

  13. Guyatt GH, Pugsley SO, Sullivan MJ, Thompson PJ, Berman LB, Jones NL, Fallen EL, Taylor DW (1984) Effect of encouragement on walking test performance. Thorax 39:818–822

    PubMed  CAS  Google Scholar 

  14. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N (1985) Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 131:700–708

    PubMed  CAS  Google Scholar 

  15. Knox AJ, Morrison JFJ, Muers MF (1988) Reproducibility of walking test results in chronic obstructive airways disease. Thorax 43:388–392

    PubMed  CAS  Google Scholar 

  16. McCarthy DS, Craig DB, Cherniack RM (1975) Intraindividual variability in maximal expiratory flow-volume and closing volume in asymptomatic subjects. Am Rev Respir Dis 112:407–411

    PubMed  CAS  Google Scholar 

  17. McDonald JB, Cole TJ (1980) The flow-volume loop: Reproducibility of air and helium-based tests in normal subjects. Thorax 35:64–69

    Article  Google Scholar 

  18. McGavin CR, Gupta SP, McHardy G Jr (1976) Twelve minute walking test for assessing disability in chronic bronchitis. Br Med J 1:822–823

    PubMed  CAS  Google Scholar 

  19. Morgan AD, Peck DF, Buchanan DR, McHardy G Jr (1983) Effect of attitudes and beliefs on exercise tolerance in chronic bronchitis. Br Med J 286:171–173

    CAS  Google Scholar 

  20. Mungall IPF, Hainsworth R (1979) Assessment of respiratory function in patients with chronic obstructive airways disease. Thorax 34:254–258

    PubMed  CAS  Google Scholar 

  21. Nicklaus TM, Burgin WW, Taylor Jr (1969) Spirometric tests to diagnose suspected asthma. Am Rev Respir Dis 100:153–159

    PubMed  CAS  Google Scholar 

  22. Noseda A, Carpiaux JP, Vandeput W, Prigogine T, Schmerber J (1987) Resistive inspiratory muscle training and exercise performance in COPD patients: a comparative study with conventional breathing retraining. Bull Eur Physiopathol Respir 23:457–463

    PubMed  CAS  Google Scholar 

  23. Owens MW, Kinasewitz GT, Strain DS (1986) Evaluating the effects of chronic therapy in patients with irreversible air-flow obstruction. Am Rev Respir Dis 134:935–937

    PubMed  CAS  Google Scholar 

  24. Pardy RL, Rivington RN, Despas PJ, Macklem PT (1981) Inspiratory muscle training compared with physiotherapy in patients with chronic airflow limitation. Am Rev Respir Dis 123:421–425

    PubMed  CAS  Google Scholar 

  25. Pennock BE, Rogers RM, McCaffree DR (1981) Changes in measured spirometric indices. What is significant? Chest 80:97–99

    PubMed  CAS  Google Scholar 

  26. Peslin R, Gallina C, Rotger M (1987) Methodological factors in the variability of lung volume and specific airway conductance measured by body plethysmography. Bull Eur Physiopathol Respir 23:323–327

    PubMed  CAS  Google Scholar 

  27. Pham QT, Mur JM, Cavelier C, Meyer-Bisch C, Chau N, Huong ND (1981) Indices fonctionnels respiratoires: variabilité, valeurs de référence et pouvoir discriminant. Bull Eur Physiopathol Respir 17:949–961

    PubMed  CAS  Google Scholar 

  28. Servera E, Gimenez M, Mohan-Kumar T, Candina R, Bonassis JB (1983) Oxygen uptake at maximal exercises in chronic airflow obstruction. Bull Europ Physiopath Resp 19:553–556

    CAS  Google Scholar 

  29. Silverman M, Barry J, Hellerstein H, Janos J, Kelsen S (1988) Variability of the perceived sense of effort in breathing during exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 137:206–209

    PubMed  CAS  Google Scholar 

  30. Sonne LJ, Davis JA (1982) Increased exercise performance in patients with severe COPD following inspiratory resistive training. Chest 81:436–439

    PubMed  CAS  Google Scholar 

  31. Spector S, Luparello TJ, Kopetzky MT, Souhrada J, Kinsman RA (1976) Response of asthmatics to metacholine and suggestion. Am Rev Respir Dis 113:43–50

    PubMed  CAS  Google Scholar 

  32. Stebbings JH Jr (1971) Chronic respiratory disease among nonsmokers in Hagerstown, Maryland. II. Problems in the estimation of pulmonary function values in epidemiological surveys. Environ Res 4:163–192

    Article  PubMed  Google Scholar 

  33. Strain DS, Kinasewitz GT, Franco DP, George RB (1985) Effect of steroid therapy on exercise performance in patients with irreversible chronic obstructive pulmonary disease. Chest 88:718–721

    PubMed  CAS  Google Scholar 

  34. Swinburn CR, Wakefield JM, Jones PW (1985) Performance, ventilation and oxygen consumption in three different types of exercise test in patients with chronic obstructive lung disease. Thorax 40:581–586

    Article  PubMed  CAS  Google Scholar 

  35. Working Party “Standardization of Lung Function Tests”, Ph. H. Quanjer, Scientific Secretary (1983) Standardization lung function testing. Bull Eur Physiopathol Respir 19 (suppl 5)

  36. Yamane T (1973) Statistics. An introductory analysis, 3rd ed. Harper & Row, New York

    Google Scholar 

  37. Yernault JC, Noseda A, Van Muylem A, Estenne M (1983) Variability in lung elasticity measurements in normal humans. Am Rev Respir Dis 128:816–819

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noseda, A., Carpiaux, JP., Prigogine, T. et al. Lung function, maximum and submaximum exercise testing in COPD patients: Reproducibility over a long interval. Lung 167, 247–257 (1989). https://doi.org/10.1007/BF02714953

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714953

Key words

Navigation