Skip to main content
Log in

Pulmonary flow resistance

  • Review
  • Published:
Lung Aims and scope Submit manuscript

Abstract

In the past it has been generally assumed that pulmonary flow resistance (RL) increases with increasing flow and decreases with increasing lung volume. Recent work indicates that RL decreases with increasing flow, at least up to flow rates 3–4 times greater than those at rest, and increases progressively with increasing lung volume. This behaviour results mainly from dynamic pressure dissipations within the pulmonary tissues due to viscoelastic phenomena. In fact, during resting breathing the contribution of the latter to RL is more important than that of airway resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bake B, Wood L, Murphy B, Macklem PT, Milic-Emili J (1974) Effect of inspiratory flow rate on regional distribution of inspired gas. J Appl Physiol 37:8–17

    PubMed  CAS  Google Scholar 

  2. Bates JHT, Hunter IW, Sly PD, Obuko S, Filiatrault S, Milic-Emili J (1987) Effect of valve closure time on the determination of respiratory resistance by flow interruption. Med Biol Eng Comput 25:136–140

    Article  PubMed  CAS  Google Scholar 

  3. Bates JHT, Ludwig MS, Sly PD, Brown K, Martin JG, Fredberg JJ (1988) Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol 65:408–414

    PubMed  CAS  Google Scholar 

  4. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    PubMed  CAS  Google Scholar 

  5. Briscoe WA, Dubois AB (1985) The relationship between airway resistance, airway conductance and lung volume in subjects of different age, sex and body size. J Clin Invest 37:1279–1285

    Google Scholar 

  6. Cavagna G, Brandi G, Saibene F, Torelli G (1962) Pulmonary hysteresis. J Appl Physiol 17:51–53

    PubMed  CAS  Google Scholar 

  7. Fredberg JJ, Keefe DH, Glass GM, Castile RG, Frantz ID III (1984) Alveolar pressure nonhomogeneity during full-amplitude, high-frequency oscillation. J Appl Physiol 57:788–800

    PubMed  CAS  Google Scholar 

  8. Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic linear viscoelastic model. J Appl Physiol 28:365–372

    PubMed  CAS  Google Scholar 

  9. Hughes R, May AJ, Widdicombe JG (1959) Stress relaxation in rabbits’ lungs. J Physiol (London) 146:85–97

    CAS  Google Scholar 

  10. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Flow and volume dependence of pulmonary mechanics in anesthesized cats. J Appl Physiol 64:441–450

    PubMed  CAS  Google Scholar 

  11. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Chest wall and respiratory system mechanics in cats: effects of flow and volume. J Appl Physiol 64:2636–2646

    PubMed  CAS  Google Scholar 

  12. Macklem PT, Woolcock AJ, Hogg JC, Nadel JA, Wilson NJ (1959) Partitioning of pulmonary resistance in the dog. J Appl Physiol Lond 146:85–97

    Google Scholar 

  13. Mead J (1981) Mechanical properties of lungs. Physiol Rev 41:281–330

    Google Scholar 

  14. Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 5:779–796

    Google Scholar 

  15. Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21:749–759

    PubMed  CAS  Google Scholar 

  16. Neergaard K von, Wirz K (1927) Die Messung der Strömungswiederständ in der Atemwege des Menschen, insbesondere bei Asthma und Emphysem. Z Klin Med 105:51–82

    Google Scholar 

  17. Neergaard K von, Wirz K (1927) Über eine Methode zur Messung der Lungenelastizität am lebenden Menschen, insbesondere beim Emphysem. Z Klin Med 105:35–50

    Google Scholar 

  18. Otis AB, Bartlett CB, Mead J, McIlroy MB, Selverstone NJ, Radford EP Jr (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443

    PubMed  CAS  Google Scholar 

  19. Rossi I, Gottfried SB, Higgs BD, Zocchi L, Grassino A, Milic-Emili J (1985) Respiratory mechanics in mechanically ventilated patients with respiratory failure. J Appl Physiol 58:1849–1858

    PubMed  CAS  Google Scholar 

  20. Sly PD, Brown KA, Bates JHT, Macklem PT, Milic-Emili J, Martin JG (1988) Effect of lung volume on interrupter resistance in cats challenged with methacholine. J Appl Physiol 64:360–366

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milic-Emili, J. Pulmonary flow resistance. Lung 167, 141–148 (1989). https://doi.org/10.1007/BF02714943

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714943

Key Words

Navigation