Skip to main content
Log in

Oxidant lung injury: Intervention with sulfhydryl reagents

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Intracellular pools of reduced sulfhydryl compounds are taxed in protective and repair processes during oxidant lung injury. To determine the efficacy of exogenous sulfhydryl compounds in preventing the toxic effects of high oxygen exposure on lung, the cell permeable sulfhydryl compounds, cysteamine (CYS) or N-acetylcysteine (NaC), were infused continuously in rats during exposure to 1 atm O2. CYS caused a reduction in mortality compared to vehicle treated-oxygen exposed rats at seven days (56% vs 78% respectively). At 48 hours, CYS reduced oxidant-induced pulmonary edema, measured by wet to dry weight ratios, and prevented oxidation of lung nonprotein sulfhydryls. NaC was even more effective in reducing mortality compared to vehicle treated-oxygen exposed rats (28% vs 78% respectively). In contrast to this beneficial effect of sulfhydryl compounds in oxygen toxicity, oxidant injury due to paraquat poisoning was exacerbated. Mortality increased in mice and rats given paraquat and treated with CYS. We speculate that this effect may be due to the ability of paraquat to accept reducing equivalents directly from CYS, thereby increasing reactive oxygen generated from reduced paraquat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ameer B, Greenblatt DJ (1977) Acetaminophen. Ann Intern Med 87:202–209

    PubMed  CAS  Google Scholar 

  2. Bacq ZM, Herve A (1955) Protective action of ingested cysteamine against X-irradiation. Compt Rend Soc Biol 149:1509–1512

    CAS  Google Scholar 

  3. Boyd MR, Stiko A, Statham CN, Jones RB (1982) Protective role of endogenous pulmonary glutathione and other sulfhydryl compounds against lung damage by alkylating agents. Biochem Pharmac 31:1579–1583

    Article  CAS  Google Scholar 

  4. Currie WD, Gelein RN, Sanders AP (1973) Comparison of protective agents against hyperbaric oxygen in large animals. Aerospace Med 44:996–998

    PubMed  CAS  Google Scholar 

  5. De Lucia AJ, Mustafa MG, Cross CE (1972) Ozone interaction with rodent lung I. Effect of sulfhydryls and sulfhydryl-containing enzyme activities. J Lab Clin Med 80:559–566

    Google Scholar 

  6. De Lucia AJ, Mustafa MG, Hussain MZ, Cross CE (1975) Ozone interaction with rodent lung III. Oxidation of reduced glutathione and formation of mixed disulfides between protein and nonprotein sulfhydryls. J Clin Invest 55:794–802

    Google Scholar 

  7. DeMarco C, Grayiani MT, Mosti R (1966) Spectrophotometric determination of thiols and disulfides with N-ethylmaleimide. Anal Biochem 15:40–44

    Article  CAS  Google Scholar 

  8. Deneke SM, Gershoff SN, Fanburg BL (1983) Potentiation of oxygen toxicity in rats by dietary protein or amino acid deficiency. J Appl Physiol: Resp Environ Exercise Physiol 54:147–151

    CAS  Google Scholar 

  9. Eldjarn L (1965) Some biochemical effects of S-containing protective agents and the development of suitable SH/SS systems for thein vitro studies of such effects. Prog Biochem Pharmacol 1:173–185

    Google Scholar 

  10. Eldjarn L, Nygaard O (1954) Cystamine—Cysteamine: Intestinal absorption, distribution among various organs and excretions. Arch Int Physiol 62:476–486

    PubMed  CAS  Google Scholar 

  11. Gershman R, Gilbert DL, Caccamise D (1958) Effect of various substances on survival times of mice exposed to different high oxygen tensions. Am J Physiol 192:563–571

    Google Scholar 

  12. Gershman R, Nye SW, Gilbert DL, Dwyer P, Fenn WO (1954) Studies on oxygen poisoning. Protective effect ofβ-mercaptoethylamine. Proc Soc Exp Biol Med 85:75–77

    Google Scholar 

  13. Gilbert HF (1982) Biological disulfides: the third messenger? J Biol Chem 257:12086–12091

    PubMed  CAS  Google Scholar 

  14. Griffith OW, Meister A (1979) Translocation of intracellular glutathione to membrane bound γ-glutamyl transpeptidase as a discrete step in the γ-glutamyl cycle. Proc Natl Acad Sci U.S.A. 76:268–272

    Article  PubMed  CAS  Google Scholar 

  15. Haberle D, Wallander A, Sies H (1979) Assessment of the kidney function in maintenance of plasma glutathione concentration and redox state in anaesthetized rats. FEBS Lett 108:335–340

    Article  PubMed  CAS  Google Scholar 

  16. Haugaard N (1968) Cellular mechanisms of oxygen toxicity. Physiol Rev 48:311–373

    PubMed  CAS  Google Scholar 

  17. Hinson JA, Pohl LR, Monks TJ, Gillette JR (1981) Acetaminophen-induced hepatotoxicity. Life Sciences 29:107–116

    Article  PubMed  CAS  Google Scholar 

  18. Holme JA, Wirth PH, Dybing E, Thorgeirsson SS (1982) Modulation of N-Hydroxyparacetamol cytotoxicity in suspensions of isolated rat hepatocytes. Acta Pharmacol et Toxicol 51:96–102

    CAS  Google Scholar 

  19. Jamieson D (1965) Effect of cysteamine, cyanide, and high pressure oxygen on splenic oxygen tension and sulfhydryl content. Nature 207:541–542

    Article  PubMed  CAS  Google Scholar 

  20. Jamieson D, Van Den Brenk HAS (1962) Pulmonary damage due to high pressure oxygen breathing in rats. Changes in dehydrogenase activity of rat lung. Aust J Exp Biol Med Sci 40:51–56

    Article  PubMed  CAS  Google Scholar 

  21. Keeling PL, Smith LL (1982) Relevance of NADPH depletion and mixed disulphide formation in rat lung to the mechanism of cell damage following paraquat administration. Biochem Pharmac 31:3243–3249

    Article  CAS  Google Scholar 

  22. Keeling PL, Smith LL, Aldridge WN (1982) The formation of mixed disulfides in rat lung following paraquat administration. Biochem et Biophys Acta 716:249–257

    CAS  Google Scholar 

  23. Kimball RE, Reddy K, Pierce TH, Schwartz LW, Mustafa MG, Cross CE (1976) Oxygen toxicity: augmentation of antioxidant defense mechanisms in rat lung. Amer J Physiol 230:1425–1431

    PubMed  CAS  Google Scholar 

  24. Levine WG (1982) Glutathione, lipid peroxidation and regulation of cytochrome P-450 activity. Life Sciences 31:779–784

    Article  PubMed  CAS  Google Scholar 

  25. Massey RE, Racz WJ (1981) Effects of N-acetylcysteine on metabolism, covalent binding, and toxicity of acetaminophen in isolated mouse hepatocytes. Tox Appl Pharm 60:220–228

    Article  CAS  Google Scholar 

  26. Matkovics B, Barabas K, Szabo L, Berencsi G (1980)In vivo study of the mechanism of protective effects of ascorbic acid and reduced glutathione in paraquat poisoning. Gen Pharmac 11:455–461

    CAS  Google Scholar 

  27. Matkovics B, Barabas K, Varga SI, Szabo L, Berencsi G (1982) Some new data to the toxicological effects of paraquat and the therapy. Gen Pharmac 13:333–341

    CAS  Google Scholar 

  28. McArn GE, Gee SJ, Krieger RI, Lim LO, Ross JG (1980) Ascorbic acid potentiated pathologic and toxicologic effects of paraquat and n-propyl viologen in rats. Proc Soc Tox 19th Ann Meeting, Washington D.C., p A101

  29. Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  30. Montgomery MR, Furry J, Gee SJ, Krieger RI (1982) Ascorbic acid and paraquat: oxygen depletion with concurrent oxygen activation. Toxicol Appl Pharmacol 63:321–329

    Article  PubMed  CAS  Google Scholar 

  31. Mundy RL, Heiffer MH, Leifheit HC (1961) Blood and urine sulfhydryl and disulfide levels after large doses ofβ-mercapoethylamine or cystamine. Rad Res 14:421–425

    Article  CAS  Google Scholar 

  32. Mustafa MG, Tierney DF (1978) Biochemical and metabolic changes in lung with oxygen, ozone, and nitrogen dioxide toxicity. Am Rev Respir Dis 118:1061–1090

    PubMed  CAS  Google Scholar 

  33. Nagamatsu K, Kido Y, Terao T, Ishida T, Toki S (1982) Protective effect of sulfhydryl compounds on acute toxicity of morphinone. Life Sciences 30:1121–1127

    Article  PubMed  CAS  Google Scholar 

  34. Patterson CE, Rhodes ML (1982) The effect of superoxide dismutase on paraquat mortality in mice and rats. Toxicol Appl Pharmacol 62:65–72

    Article  PubMed  CAS  Google Scholar 

  35. Revesz L, Modig H (1965) Cysteamine-induced increase of cellular glutathione-level; a new hypothesis of radioprotective mechanism. Nature 207:430–431

    Article  PubMed  CAS  Google Scholar 

  36. Rhodes ML, Patterson CE (1979) Chronic intravenous infusion in the rat: a nonsurgical approach. Lab Anim Sci 29:82–84

    PubMed  CAS  Google Scholar 

  37. Schatte C, Swansinger A (1976) Effect of dietary “antioxidant” supplementation on the susceptibility to oxygen toxicity in mice. Aviat Space Environ Med 47:147–150

    PubMed  CAS  Google Scholar 

  38. Sokal RR, Rohlf FJ (1969) inBiometry, Freeman and Co., San Francisco, California, p. 235–246.

    Google Scholar 

  39. Sorbo B (1962) The effect of radioprotective agents on tissue nonprotein sulfhydryl and disulfide levels. Arch Biochem Biophys 98:342–344

    Article  PubMed  CAS  Google Scholar 

  40. Szabo S, Trier JS, Frankel PW (1981) Sulfhydryl compounds may mediate gastric cytoprotection. Science 214:200–202

    Article  PubMed  CAS  Google Scholar 

  41. Thor H, Moldeus P, Orrenius S (1979) Effect of cysteine, N-acetylcysteine, and methionine on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatocytes. Arch Biochem Biophys 192:405–413

    Article  PubMed  CAS  Google Scholar 

  42. Waechter JM, Faiman MS (1982) Glutathione and nonprotein sulfhydryl in cerebral cortex and lung in mice exposed to high oxygen pressure. Toxicol 23:213–221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, C.E., Butler, J.A., Byrne, F.D. et al. Oxidant lung injury: Intervention with sulfhydryl reagents. Lung 163, 23–32 (1985). https://doi.org/10.1007/BF02713803

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02713803

Key words

Navigation