Optimal output-sensitive convex hull algorithms in two and three dimensions

Abstract

We present simple output-sensitive algorithms that construct the convex hull of a set ofn points in two or three dimensions in worst-case optimalO (n logh) time andO (n) space, whereh denotes the number of vertices of the convex hull.

References

  1. 1.

    T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.Discrete Comput. Geom., this issue, pp. 369–387.

  2. 2.

    T. M. Chan, J. Snoeyink, and C.-K. Yap. Output-sensitive construction of polytopes in four dimensions and clipped Voronoi diagrams in three.Proc. 6th ACM-SIAM Symp. on Discrete Algorithms, pp. 282–291, 1995.

  3. 3.

    D. R. Chand and S. S. Kapur. An algorithm for convex polytopes.J. Assoc. Comput. Mach., 17:78–86, 1970.

    MATH  MathSciNet  Google Scholar 

  4. 4.

    B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.SIAM J. Comput., 21:671–696, 1992.

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions.J. Assoc. Comput. Mach., 34:1–27, 1987.

    MathSciNet  Google Scholar 

  6. 6.

    B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations.Proc. 18th Internat. Colloq. on Automata, Languages, and Programming, pp. 661–673, Lecture Notes in Computer Science, vol. 510. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  7. 7.

    B. Chazelle and J. Matoušek. Derandomizing an output-sensitive convex hull algorithm in three dimensions.Comput. Geom. Theory Appl., 5:27–32, 1995.

    MATH  Google Scholar 

  8. 8.

    K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete Comput. Geom., 4:387–421, 1989.

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection.Theoret. Comput. Sci., 27:241–253, 1983.

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra: a unified approach.Proc. 17th Internat. Colloq. on Automata, Languages, and Programming, pp. 440–413, Lecture Notes in Computer Science, vol. 443. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  11. 11.

    H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  12. 12.

    H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms.ACM Trans. Graphics, 9:66–104, 1990.

    MATH  Article  Google Scholar 

  13. 13.

    H. Edelsbrunner and W. Shi. AnO (n log2 h) time algorithm for the three-dimensional convex hull problem.SIAM J. Comput., 20:259–277, 1991.

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies.Proc. 8th ACM Symp. on Computational Geometry, pp. 74–82, 1992.

  15. 15.

    R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.Inform. Process. Lett., 1:132–133, 1972.

    MATH  Article  Google Scholar 

  16. 16.

    S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica, 6:151–177, 1986.

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    J. Hershberger. Finding the upper envelope ofn line segments inO (n logn) time.Inform. Process. Lett., 33:169–174, 1989.

    MATH  Article  MathSciNet  Google Scholar 

  18. 18.

    J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk.Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pp. 54–63, 1993.

  19. 19.

    R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.Inform. Process. Lett., 2:18–21, 1973.

    MATH  Article  Google Scholar 

  20. 20.

    D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm?SIAM J. Comput., 15: 287–299, 1986.

    MATH  Article  MathSciNet  Google Scholar 

  21. 21.

    K. Mulmuley.Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  22. 22.

    J. O'Rourke, C.-B. Chien, T. Olson, and D. Naddor. A new linear algorithm for intersecting convex polygons.Comput. Graph. Image Process., 19:384–391, 1982.

    MATH  Article  Google Scholar 

  23. 23.

    J. O'Rourke,Computational Geometry in C. Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  24. 24.

    F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions.Commun. ACM, 20:87–93, 1977.

    MATH  Article  MathSciNet  Google Scholar 

  25. 25.

    F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  26. 26.

    G. F. Swart. Finding the convex hull facet by facet.J. Algorithms, 6:17–48, 1985.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

This research was supported by a Killam Predoctoral Fellowship and an NSERC Postgraduate Scholarship.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chan, T.M. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput Geom 16, 361–368 (1996). https://doi.org/10.1007/BF02712873

Download citation

Keywords

  • Convex Hull
  • Discrete Comput Geom
  • Computational Geometry
  • Convex Polygon
  • Lower Envelope