Skip to main content
Log in

Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293·15, 303·15 and 313·15 K

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.5 to 313.15 K have been measured. Partial molar volumes at infinite dilution (V 02 ) of sucrose determined from apparent molar volume (φ v ) have been utilized to estimate partial molar volumes of transfer (V 02,tr ) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume (φ 0 v ), slope (S v ) and coefficients of the Jones-Dole equation. The structure-making and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence ofφ 0 v .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pandey J D and Shukla A 1986Acoust. Lett. 9 156

    CAS  Google Scholar 

  2. Pandey J D, Mishra K and Mushran V 1992Acoust. Lett. 15 23

    Google Scholar 

  3. Vishnu, Wadhwani R and Akhtar Y 1995Indian J. Chem. 34 954

    Google Scholar 

  4. Goldberg R N and Tewari Y B 1989J. Phys. Chem. Ref. Data 18 809

    Article  CAS  Google Scholar 

  5. Boerio Goates J 1991J. Chem. Thermodyn. 23 403

    Article  Google Scholar 

  6. Putnam R L and Boerio-Goates J 1993J. Chem. Thermodyn. 25 607

    Article  CAS  Google Scholar 

  7. Goldberg R N and Tewari Y B 1989J. Biol. Chem. 264 9897

    CAS  Google Scholar 

  8. Goldberg R N, Tewari Y B and Ahluwalia J C 1989J. Biol. Chem. 264 9901

    CAS  Google Scholar 

  9. Tewari Y B and Goldberg R N 1991Biophys. Chem. 40 59

    Article  CAS  Google Scholar 

  10. Birch G G and Shamil S 1988J. Chem. Soc., Faraday Trans. I 84 2635

    Article  CAS  Google Scholar 

  11. Arakawa T, Kita Y and Carpenter J F 1991Pharmcol. Res. 8 285

    Article  CAS  Google Scholar 

  12. Miller D P and de Pablo J J 2000J. Phys. Chem. B104 8876

    Google Scholar 

  13. Gupta M N 1991Biotechnol. Appl. Biochem. 14 1

    Google Scholar 

  14. Timasheff S N and Arakawa T 1990 InProtein structure —A practical approach (ed.) T E Creghton (Oxford: IRL Press) p. 331

    Google Scholar 

  15. Galema S A, Blandamer M J and Engberts J B F N 1990J. Am. Chem. Soc. 112 9665

    Article  CAS  Google Scholar 

  16. Galema S A and Hoiland H 1991J. Phys. Chem. 95 5321

    Article  CAS  Google Scholar 

  17. Birch G G, Grigor J and Derbyshire W 1989J. Solution Chem. 18 795

    Article  CAS  Google Scholar 

  18. Galema S A, Howard E, Engberts J B F N and Grigera J R 1994Carbohyd. Res. 265 215

    Article  CAS  Google Scholar 

  19. Schnidt R K, Karplus M and Braby J W 1996J. Am. Chem. Soc. 118 541

    Article  Google Scholar 

  20. Tait M J, Suggett A, Frank F, Abbett S and QuickendenP A 1972J. Sol. Chem. 1 131

    Article  CAS  Google Scholar 

  21. Suggett A, Abbett S and Lillford P J 1976J. Sol. Chem. 5 17

    Article  CAS  Google Scholar 

  22. Danford M D 1962J. Am. Chem. Soc. 84 3965

    Article  CAS  Google Scholar 

  23. Jha A, Dey R and Roy M N 2002J. Indian Chem. Soc. 79 148

    CAS  Google Scholar 

  24. Masson D O 1928Philos. Mag. 8 218

    Google Scholar 

  25. Jones G and Dole M 1929J. Am. Chem. Soc. 51 2950

    Article  CAS  Google Scholar 

  26. HeplerL 1969Can. J. Chem. 47 4613

    Article  Google Scholar 

  27. Sharma T S and Ahluwalia J C 1973Rev. Chem. Soc. 2 217; Gurney R W 1954Ionic process in solutions (New York: McGraw Hill)

    Google Scholar 

  28. Banipal T S, Kaur D, Singh G, Lark B S and Banipal P K 2002Indian J. Chem. A41 1131

    Google Scholar 

  29. Parmar M L and Dhiman D K 2002J. Indian Chem. Soc. 79 729

    CAS  Google Scholar 

  30. Ward G K and Millero F J 1974J. Soln. Chem. 3 417

    Article  CAS  Google Scholar 

  31. Parmar M L and Dhiman D K 2001Indian J. Chem. A40 1161

    Google Scholar 

  32. Parmar M L and Sharma S 1999J. Indian Chem. Soc. 76 202

    CAS  Google Scholar 

  33. Findlay A 1954Practical physical chemistry 8th edn (ed.) J A Kitchner (London: Longman) p. 70

    Google Scholar 

  34. Parmar M L, Dhiman D K and Thakur R C 2002Indian J. Chem. A41 2032

    Google Scholar 

  35. Parmar M L and Sharma S 1990J. Indian Chem. Soc. 67 592

    CAS  Google Scholar 

  36. Nikam P S, Sawant A S, Aher J S and Khainar R S 2000J. Indian Chem. 77 197

    CAS  Google Scholar 

  37. Millero F J and Hansen W D 1968J. Phys. Chem. 72 1758

    Article  CAS  Google Scholar 

  38. Millero F J 1971Chem. Rev. 71 147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R., Singh, M. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293·15, 303·15 and 313·15 K. J Chem Sci 117, 275–282 (2005). https://doi.org/10.1007/BF02709298

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709298

Keywords

Navigation