Skip to main content
Log in

Applications of self-assembled monolayers in materials chemistry

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with various functionalities like -SH,-COOH,-NH2, silanes etc. These surfaces can be effectively used to build-up interesting nano level architectures. Flexibility with respect to the terminal functionalities of the organic molecules allows the control of the hydrophobicity or hydrophilicity of metal surface, while the selection of length scale can be used to tune the distant-dependent electron transfer behaviour. Organo-inorganic materials tailored in this fashion are extremely important in nanotechnology to construct nanoelctronic devices, sensor arrays, supercapacitors, catalysts, rechargeable power sources etc. by virtue of their size and shape-dependent electrical, optical or magnetic properties. The interesting applications of monolayers and monolayer-protected clusters in materials chemistry are discussed using recent examples of size and shape control of the properties of several metallic and semiconducting nanoparticles. The potential benefits of using these nanostructured systems for molecular electronic components are illustrated using Au and Ag nanoclusters with suitable bifunctional SAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulman A 1991An introduction to ultrathin organic films: From Langmuir-Blodgett to self-assembly (New York: Academic Press)

    Google Scholar 

  2. Dubois L H and Nuzzo R G 1991Annu. Rev. Phys. Chem. 43 437

    Google Scholar 

  3. Nuzzo R G and Allara D L 1986J. Am. Chem. Soc. 105 4481

    Article  Google Scholar 

  4. Ulman A 1996Chem. Rev. 96 1533

    Article  CAS  Google Scholar 

  5. Becka A M and Miller C A1993J. Phys. Chem. 97 6233

    Article  CAS  Google Scholar 

  6. Feldheim D L and Keating D C 1998Chem. Soc. Rev. 27 1

    Article  CAS  Google Scholar 

  7. Dorogi M, Gomez J, Osifchin R, Andress R P and Reinfenberger R 1995Phys. Rev. B52 9071

    Google Scholar 

  8. Duan C and Meyerhoff M E 1994Anal. Chem. 66 1369

    Article  CAS  Google Scholar 

  9. Bain C D and Whitesides G M 1988J. Am. Chem. Soc. 110 5897

    Article  CAS  Google Scholar 

  10. Laibinis P E and Whitesides G M1992J. Am. Chem. Soc. 114 9022

    Article  CAS  Google Scholar 

  11. Flink S, Van-Veggel C J M and Reinhoudt D N 2000Adv. Mater. 12 1315

    Article  CAS  Google Scholar 

  12. Prime K L and Whitesides G M 1991Science 252 1164

    Article  CAS  Google Scholar 

  13. Sagiv J 1980J. Am. Chem. Soc. 102 92

    Article  CAS  Google Scholar 

  14. Heflin J R, Figura C, Marciu D, Liu Y and Claus R O 1999Appl. Phys. Lett. 74 495

    Article  CAS  Google Scholar 

  15. Dannenberger O, Buck M and Grunze M 1999J. Phys. Chem. B103 2202

    Google Scholar 

  16. Alivisatos A P 1996J. Phys. Chem. 100 13226

    Article  CAS  Google Scholar 

  17. Lewis L N 1993Chem. Rev. 93 2693

    Article  CAS  Google Scholar 

  18. Brige R R (ed.) 1991 Molecular and biomolecular electronics (Washington DC: Am. Chem. Soc.)

    Google Scholar 

  19. Bandyopadhyay K and Vijayamohanan K 1998Langmuir 14 625

    Article  CAS  Google Scholar 

  20. Aslam M, Bandyopadhyay K, Lakshminarayanan V and Vijayamohanan K 2001J. Colloid. Interface Sci. 234 410

    Article  CAS  Google Scholar 

  21. Venkataramanan M, Skanh G, Bandyopadhyay K, Vijayamohanan K and Pradeep T 1999J. Colloid. Interface Sci. 212 553

    Article  CAS  Google Scholar 

  22. Bandyopadhyay K, Sastry M, Paul V and Vijayamohanan K 1997Langmuir 13 866

    Article  CAS  Google Scholar 

  23. Bandyopadhyay K, Vijayamohanan K, Venkataramanan M and Pradeep T 1999Langmuir 15 5314

    Article  CAS  Google Scholar 

  24. Murty KVGK, Venkataramana M and Pradeep T 1998Langmuir 14 5446

    Article  CAS  Google Scholar 

  25. Finklea H O, Snider D A, Fedyk J, Sabatani E, Gafni Y and Rubenstein I 1993Langmuir 9 3660

    Article  CAS  Google Scholar 

  26. Porter M D, Bright T B, Allara D L and Chidsey C E D 1987J. Am. Chem. Soc. 109 3559

    Article  CAS  Google Scholar 

  27. Bourg M-C, Badia A and Lennox R B 2000J. Phys. Chem. B104 6562

    Google Scholar 

  28. Nuzzo R G, Dubios L H and Allara D L 1990J. Am. Chem. Soc. 112 558

    Article  CAS  Google Scholar 

  29. Poirier G E 1997Chem. Rev. 97 1117

    Article  CAS  Google Scholar 

  30. Wink Th, Van Zuilen S J, Bult A and van Bennekom W P 1997Analyst 122 43R

    Article  CAS  Google Scholar 

  31. Willner I and Katz E 1998New J. Chem. 23 481

    Google Scholar 

  32. Allivistos A P 1996Science 271 933

    Article  Google Scholar 

  33. Volokitin Y, Sinzig J, de-Jongh L J, Schmid G and Moiseev I I 1996Nature(London) 384 621

    CAS  Google Scholar 

  34. Chen S, Ingram R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G, Khoury J T, Alvarez M M and Whetten R L 1998Science 280 2098

    Article  CAS  Google Scholar 

  35. Smion U, Schön G and Schmid G 1993Angew. Chem., Int. Ed. Engl. 32 250

    Article  Google Scholar 

  36. Thomas P J, Kulkarni G U and Rao C N R 2000Chem. Phys. Lett. 321 163

    Article  CAS  Google Scholar 

  37. Sarathy K V, Kulkarni G U and Rao C N R 1997Chem. Commun. 537

  38. Brust M, Walker M, Schiffrin D V and Whyman R 1994J. Chem. Soc.,Chem. Commun. 801

  39. Whetten R L, Khoury J T, Alvaraz M M, Murthy S, Vezmar I, Wang Z L, Stephens P W, Cleland C L, Luedtke W D and Landamn U 1996Adv. Mater. 8 428

    Article  CAS  Google Scholar 

  40. Gittins D I, Bethell D, Schiffrin J and Nichols R J 2000Nature (London) 408 67

    Article  CAS  Google Scholar 

  41. Aslam M, Mulla I S and Vijayamohanan K 2001Appl. Phys. Lett. 79 689

    Article  CAS  Google Scholar 

  42. Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu Virden J W and McVay G L 1994Science 264 48

    Article  CAS  Google Scholar 

  43. Aslam M, Pethkar S, Bandopadhyay K, Mulla I S, Sainkar S R, Mandal A B and Vijayamohanan K 2000J. Mater. Chem. 10 1737

    Article  CAS  Google Scholar 

  44. Küther J and Termel W 1997Chem. Commun. 2029

  45. Küther J, Nelles G, Seshadri R, Schaub M, Butt H J and Termel W 1998Chem. Eur. J. 4 1834

    Article  Google Scholar 

  46. Bandopadyopadhyay K, Patil V, Vijayamohanan K and Sastry M 1997Langmuir 13 5244

    Article  Google Scholar 

  47. Shipway A N, Katz E and Willner I 2000Chem. Physchem. 1 18

    CAS  Google Scholar 

  48. Murray C B, Kagan C R and Bawendi M G 1996Science 270 1335

    Article  Google Scholar 

  49. Sarathy K V, Thomas P J, Kulkarni G U and Rao C N R 1999J. Phys. Chem. B103 399

    Google Scholar 

  50. Pethkar S, Aslam M, Mulla I S, Ganeshan P and Vijayamohanan K 2001J. Mater. Chem. 11 1710

    Article  CAS  Google Scholar 

  51. Kumar A, Mandal A B and Sastry M 2000Langmuir 16 6921

    Article  CAS  Google Scholar 

  52. Ederth T 2000J. Phys. Chem. B104 9704

    Google Scholar 

  53. Aslam M, Mulla I S and Vijayamohanan K 2001Langmuir (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijayamohanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaki, N.K., Aslam, M., Sharma, J. et al. Applications of self-assembled monolayers in materials chemistry. J Chem Sci 113, 659–670 (2001). https://doi.org/10.1007/BF02708798

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708798

Keywords

Navigation