Skip to main content
Log in

Hydrocarbon chain conformation in an intercalated surfactant monolayer and bilayer

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Cetyl trimethyl ammonium (CTA) ions have been confined within galleries of layered CdPS3 at two different grafting densities. Low grafting densities are obtained on direct intercalation of CTA ions into CdPS3 to give Cd0.93PS3(CTA)0.14. Intercalation occurs with a lattice expansion of 4.8 Å with the interlamellar surfactant ion lying flat forming a monolayer. Intercalation at higher grafting densities was effected by a two-step ion-exchange process to give Cd0.83PS3(CTA)0.34, with a lattice expansion of 26.5 Å. At higher grafting densities the interlamellar surfactant ions adopt a tilted bilayer structure.13C NMR and orientation-dependent IR vibrational spectroscopy on single crystals have been used to probe the conformation and orientation of the methylene ‘tail’ of the intercalated surfactant in the two phases. In the monolayer phase, the confined methylene chain adopts an essentially all-trans conformation with most of the trans chain aligned parallel to the gallery walls. On lowering the temperature, molecular plane aligns parallel, so that the methylene chain lies flat, rigid and aligned to the confining surface. In the bilayer phase, most bonds in the methylene chain are in trans conformation. It is possible to identify specific conformational sequences containing a gauche bond, in the interior and termini of the intercalated methylene. These high energy conformers disappear on cooling leaving all fifteen methylene units of the intercalated cetyl trimethyl ammonium ion in trans conformational registry at 40 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfe T A, Demirel T and Baumann E R 1985Clays and clay minerals 33 301

    Article  CAS  Google Scholar 

  2. Van Y, Bein T 1993Chem. Mater. 5 905

    Article  Google Scholar 

  3. Okahata Y and Shimizu A 1989Langmuir 5 954

    Article  CAS  Google Scholar 

  4. Lagaly G 1976Angew. Chem., Int. Ed. Engl. 15 575

    Article  Google Scholar 

  5. Ogawa M and Kuroda K 1997Bull. Chem. Soc. Jpn. 70 2593

    Article  CAS  Google Scholar 

  6. Pavan P C, Gomes G A and Valim J B 1998Microporous and mesoporous materials 21 659

    Article  CAS  Google Scholar 

  7. Matsuo Y, Hatase K and Sugie Y 1999Chem. Commun. 43.

  8. Price S J, Hare D O, Francis R J, Fogg A and Brien S OChem. Commun. 2453

  9. Venkataraman N V and Vasudevan, S 2000J. Phys. Chem. B104 11179

    Google Scholar 

  10. Venkataraman N V and Vasudevan S 2001J. Phys. Chem. B105 1805

    Google Scholar 

  11. Venkataraman N V and Vasudevan S 2001J. Phys. Chem. B105 7639

    Google Scholar 

  12. Jordan J W 1950J. Phys. Colloid. Chem. 54 294

    Google Scholar 

  13. Mortland M M, Shaobai S and Boyd S A 1986Clays and Clay Minerals 34 581

    Article  CAS  Google Scholar 

  14. Stul M S, Maes A and Uytterhoeven J B 1978Clays and Clay Minerals 26 309

    Article  CAS  Google Scholar 

  15. Ogawa M, Aono T, Kuroda K and Kato C 1993Langmuir 26 309

    Google Scholar 

  16. Vaia R A and Giannelis E P 1997Macromolecules 30 8000

    Article  CAS  Google Scholar 

  17. Ouvrard G, Brec R and Rouxel J 1985Mater. Res. Bull. 20 1181

    Article  CAS  Google Scholar 

  18. Jeevanandam P and Vasudevan S 1997Solid State Ionics 104 45

    Article  CAS  Google Scholar 

  19. Israelachvili J NIntermolecular and surface forces: With applications to colloidal and biological systems (London: Academic Press) 1985

    Google Scholar 

  20. Arun N, Vasudevan S and Ramanathan K V 2000J. Am. Chem. Soc. 122 6028

    Article  CAS  Google Scholar 

  21. Length estimated fromInsight II molecular modelling system; Biosym Technologies: San Diego, CA, 1993

  22. Klingen V W, Ott R, Hahn H 1973Z. Anorg. Allg. Chem. 396 271

    Article  CAS  Google Scholar 

  23. Wang Li-Qiong, Liu J, Exarhos G J, Flanigan K Y and Bordia R 2000J. Phys. Chem. B104 2810

    Google Scholar 

  24. Cheney B V and Grant D M 1967J. Am. Chem. Soc. 89 5319

    Article  CAS  Google Scholar 

  25. Williams E, Sears B, Allerhand A and Cordes E H 1973J. Am. Chem. Soc. 95 4871

    Article  CAS  Google Scholar 

  26. Ulman A 1991An introduction to ultrathin organic films: From Langmuir-Blodgett to self-assembly (San Diego: Academic Press)

    Google Scholar 

  27. Wallach D F H, Verma S R and Fookson 1979J. Biochim. Biophys. Acta. 559 153

    CAS  Google Scholar 

  28. Snyder R G, Strauss H L and Elliger C A 1982J. Phys. Chem. 86 5145

    Article  CAS  Google Scholar 

  29. MacPhail R A, Strauss H L, Snyder R G and Elliger C A 1984J. Phys. Chem. 88 334

    Article  CAS  Google Scholar 

  30. Snyder R G 1967J. Chem. Phys. 47 1316

    Article  CAS  Google Scholar 

  31. Naidu S V and Smith F A 1994J. Phys.: Condens. Matter. 6 3865

    Article  CAS  Google Scholar 

  32. Snyder R G 1960J. Mol. Spectrosc. 4 411

    Article  CAS  Google Scholar 

  33. Snyder R G and Schachtschnelder J H 1963Spectrochim. Acta. 19 85

    Article  CAS  Google Scholar 

  34. Tasumi M, Shimaanouchi T, Watanabe A and Goto R 1964Spectrochim. Acta. 20 629

    Article  Google Scholar 

  35. Chia N C, Vilcheze C, Bittman R and Mendelsohn R 1993J. Am. Chem. Soc. 115 12050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataraman, N.V., Vasudevan, S. Hydrocarbon chain conformation in an intercalated surfactant monolayer and bilayer. J Chem Sci 113, 539–558 (2001). https://doi.org/10.1007/BF02708789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708789

Keywords

Navigation