Journal of Chemical Sciences

, Volume 118, Issue 1, pp 47–55 | Cite as

Design and fabrication of an automated temperature programmed reaction system to evaluate 3-way catalysts Ce1−x−y,(La/Y)xPtyO2−δ

  • Arup Gayen
  • Tinku Baidya
  • G. S. Ramesh
  • R. Srihari
  • M. S. Hegde

Abstract

A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1−−x−y Ptx(La/Y)yO2-δ catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N2 and H2O is done with this catalyst which shows complete removal of pollutants below 325°C. Fixed oxide-ion defects in Pt substituted Ce1−y(La/Y)yO2−y/2 show higher catalytic activity than Pt ion-substituted CeO2.

Keywords

Automatic TPR ceria, three way catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cvettanovic R J and Anemenomia Y 1967Adv. Catal. 17 103CrossRefGoogle Scholar
  2. 2.
    Jenkins J W 1975Gordon research conference on catalysis, Colby-Sawyer College, New London, NHGoogle Scholar
  3. 3.
    Robertson S D, McNicol B D, De Bass J H, Kloet S C and Jenkins J W 1975J. Catal. 37 424CrossRefGoogle Scholar
  4. 4.
    Dawson P T and Walker P C 1987Adv. Catal. 36 211Google Scholar
  5. 5.
    Jacobs P A, Linart J, Nijs H and Uyterhoeven J B 1977J. Chem. Soc. Faraday Trans. I 73 1745Google Scholar
  6. 6.
    Wagstaff N and Prins R J 1979J. Catal. 59 434CrossRefGoogle Scholar
  7. 7.
    Lycourghiotis A, Defosse C, Delannay F, Lemaitre J and Delmon B J 1981J. Chem. Soc., Faraday Trans. I 77 603CrossRefGoogle Scholar
  8. 8.
    Hurst N W, Gentry S J, Jones A and McNicol B D 1982Catal. Rev.-Sci. Eng. 24 233CrossRefGoogle Scholar
  9. 9.
    Jones A and McNicol B D 1986Temperatureprogrammed reduction for solid materials characterization (New York: Dekker)Google Scholar
  10. 10.
    Boer H, Boersma W J and Wagstaff N 1982Rev. Sci. Instrum. 54 349CrossRefGoogle Scholar
  11. 11.
    Hegde M S, Ramesh S and Ramesh G S 1992Proc. Indian Acad. Sci. (Chem. Sci.) 104 591Google Scholar
  12. 12.
    Doraiswamy L K and Tajbl D G 1975Catal. Rev. 10 177CrossRefGoogle Scholar
  13. 13.
    Thomas J M and Thomas W J 1967Introduction to the principles of heterogeneous catalysis (London: Academic Press)Google Scholar
  14. 14.
    Bera P, Priolkar K R, Gayen A, Sarode P R, Hegde M S, Emura S, Kumashiro R, Jayaram V and Subbanna G N 2003Chem. Mater. 15 2049CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Carvajal J 2001 An introduction to the program FullProf 2000 (Version July 2001), Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, FranceGoogle Scholar
  16. 16.
    Bera P, Gayen A, Hegde M S, Lalla N P, Spadaro L, Frusteri F and Arena F 2003J. Phys. Chem. B107 6122Google Scholar
  17. 17.
    Cao G, Seimiya Y, Ohno Y and Matsushima T 1998Chem. Phys. Lett. 294 419CrossRefGoogle Scholar
  18. 18.
    Burwell R L Jr 1976Pure Appl. Chem. 46 71Google Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • Arup Gayen
    • 1
  • Tinku Baidya
    • 1
  • G. S. Ramesh
    • 2
  • R. Srihari
    • 1
  • M. S. Hegde
    • 1
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangalore
  2. 2.Techno Science InstrumentsBangalore

Personalised recommendations