Skip to main content
Log in

Insights from stable light isotopes on enamel defects and weaning in Pliocene herbivores

  • Articles
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

A high prevalence of enamel hypoplasia in several herbivores from the early Pliocene Langebaanweg locality, South Africa, indicates general systemic stress during the growing years of life. The presence of several linear enamel hypoplasias per tooth crown in many teeth further suggest that these stress events may be episodic. The δ18O values along tooth crowns of mandibular second molars ofSivatherium hendeyi (Artiodactyla, Giraffidae) were used to investigate the cause of the stress events in this tooth type. Results show that weaning in this fossil giraffid occurred at a similar ontogenetic age to that in extant giraffes, and that the observed enamel hypoplasia towards the base of this tooth type manifested post-weaning. Further, high-resolution oxygen isotope analyses acrossS. hendeyi third molars suggest that the entire development of defective tooth crowns occurred under conditions of increased aridity in which the cool, rainy part of the seasonal cycle was missing. The high prevalence of this defect in many herbivores suggests that climatic conditions were not favourable. This study reiterates the value of stable isotope analyses in determining both the behaviour of fossil animals and the environmental conditions that prevailed during tooth development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balasse M, Ambrose S H, Smith A B and Price T D 2002 The seasonal mobility model for prehistoric herders in the Southwestern Cape of South Africa assessed by isotopic analysis of sheep tooth enamel;J. Archaeol. Sci. 29 917–932

    Article  Google Scholar 

  • Bocherens H, Koch P L, Mariotti A, Geraads D and Jaeger J-J 1996 Isotopic biogeochemistry (13C,18O) of Mammalian Enamel from African Pleistocene Hominid sites;Palaios 11 306–318

    Article  Google Scholar 

  • Bryant J D, Luz B and Froelich P N 1994 Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental palaeoclimate;Palaeogeogr. Palaeoclimatol. Palaeoecol. 107 303–316

    Article  Google Scholar 

  • Cerling T E, Harris J M, Ambrose S H, Leakey M G and Solounias N 1997 Global vegetation change through the Miocene/ Pliocene boundary;Nature (London) 389 152–157

    Article  CAS  Google Scholar 

  • Dobney K and Ervynck A 2000 Interpreting developmental stress in Archaeological pigs: the chronology of linear enamel hypoplasia;J. Archaeol. Sci. 27 597–607

    Article  Google Scholar 

  • Ensor B E and Irish J D 1995 Hypoplastic Area Method for Analysing Dental Enamel Hypoplasia;Am. J. Phys. Anthropol. 98 507–517

    Article  PubMed  CAS  Google Scholar 

  • Feranec R S and MacFadden B J 2000 Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes;Palaeogeogr. Palaeoclimatol. Palaeoecol. 162 155–169

    Article  Google Scholar 

  • Franz-Odendaal T A, Chinsamy A and Lee-Thorp J A 2004 High prevalence of enamel Hypoplasia in an Early Pliocene giraffid (Sivatherium hendeyi) assemblage;J. Vertebr. Paleontol. (in press)

  • Franz-Odendaal T A, Lee-Thorp J A and Chinsamy A 2002 New evidence for the lack of C4 grassland expansions during the Early Pliocene at Langebaanweg, South Africa;Paleobiology 28 378–388

    Article  Google Scholar 

  • Fricke H C and O’Neil J R 1996 Inter- and intra-tooth variation in the oxygen isotopic composition of mammalian tooth enamel phosphate implications for palaeoclimatological and palaeobiological research;Palaeogeogr. Palaeoclimatol. Palaeoecol. 126 91–99

    Article  Google Scholar 

  • Goodman A H and Rose J C 1990 The Assessment of Systemic Physiological Pertubations from Dental Enamel Hypoplasias and Associated Histological sections;Yearb. Phys. Anthropol. 33 59–110

    Article  Google Scholar 

  • Goodman A H and Rose J C 1991 Dental Enamel Hypoplasias as Indicators of Nutritional stress; inAdvances in dental anthropology (eds) M A Kelley and C S Larson (New York: Wiley-Liss) pp 279–293

    Google Scholar 

  • Hall-Martin A J 1976 Dentition and age determination of the giraffeGiraffa camelopardalis;J. Zool. 180 263–289

    Article  Google Scholar 

  • Hendey Q B 1981 Palaeoecology of the late Tertiary fossil occurences in ’E’ quarry, Langebaanweg, South Africa, and a reinterpretation of their geological context;Ann. S. Afr. Mus. 84 1–104

    Google Scholar 

  • Hendey Q B 1983a Palaeoenvironmental implications of the Late Tertiary vertebrate fauna of the Fynbos region; inFynbos palaeoecology: A preliminary synthesis (eds) H J Deacon, Q B Hendey and J J N Lambrechts (South African National Science Programmes Report, Cape Town, South Africa) pp 100–115

    Google Scholar 

  • Hendey Q B 1983b Palaeontology and palaeoecology of the Fynbos region: An introduction; inFynbos palaeoecology: A preliminary synthesis (eds) H J Deacon, Q B Hendey and J J N Lambrechts (South African National Scientific Programmes Report, Cape Town, South Africa) pp 87–99

    Google Scholar 

  • Hendey Q B 1984 Southern African late tertiary vertebrates;in Southern African prehistory and palaeoenvironments (ed.) R G Klein (Rotterdam: A A Balkema) pp 81–106

    Google Scholar 

  • Janis C 1993 Tertiary Mammal Evolution in the Context of Changing Climates, Vegetation, and Tectonic Events;Annu. Rev. Ecol. Syst. 24 467–500

    Article  Google Scholar 

  • Janis C, Damuth J and Theodor J M 2000 Miocene ungulates and terrestrial primary productivity: where have all the browsers gone?;Proc. Natl. Acad. Sci. USA 97 7899–7904

    Article  PubMed  CAS  Google Scholar 

  • Koch P L, Fisher D C and Dettman D 1989 Oxygen Isotope Variation in the tusks of extinct proboscideans: A measure of season of death and seasonality;Geology 17 515–519

    Article  CAS  Google Scholar 

  • Kurten B 1972The age of mammals (New York: Columbia University Press)

    Google Scholar 

  • LeGeros R Z 1981 Apatites in biological systems;Prog. Crystal Growth Character. 4 1–45

    Article  CAS  Google Scholar 

  • Le Geros R Z (ed.) 1991Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Science (New York: Karger) vol. 15

    Google Scholar 

  • MacFadden B J, Cerling T E and Prado J 1996 Cenozoic Terrestrial Ecosystems Evolution in Argentina: Evidence from Carbon Isotopes of Fossil Mammal Teeth;Palaios 11 319–327

    Article  Google Scholar 

  • Mead A J 1999 Enamel Hypoplasia in Miocene rhinoceroses (Teleoceraas) from Nebraska: Evidence of severe Physiological Stress;J. Vertebr. Paleontol. 19 391–397

    Article  Google Scholar 

  • Neiburger E J 1990 Enamel Hypoplasia: Poor Indicators of Dietary Stress;Am. J. Phys. Anthropol. 82 231–232

    Article  PubMed  CAS  Google Scholar 

  • Niven L B 2002 Enamel Hypoplasia in Bison: Paleoecological implications for modelling hunter-gatherer procurement and processing on the northwestern plains;Archaeozoologica 11 101–112

    Google Scholar 

  • Partridge T C, Granger D E, Caffee M W and Clarke R C 2003 Pliocene hominid remains from Sterkfontein;Science 300 607–612

    Article  PubMed  CAS  Google Scholar 

  • Scott L 1995 Pollen evidence for Vegetational and Climatic Change in Southern Africa during the Neogene and Quaternary; inPaleoclimate and evolution with emphasis on human origins (eds) E S Vrba, G H Denton, T C Partridge and L H Burckle (Yale: Yale University Press) pp 65–76

    Google Scholar 

  • Solounias N, McGraw W S, Hayek L and Werdelin L 2000 The Paleodiet of Giraffidae; inAntelopes, deer and relatives. Fossil record, behavioural ecology, systematics and conservation (eds) E S Vrba and G B Schaller (New York: Yale University) chapter 6, pp 83–95

    Google Scholar 

  • Sponheimer M and Lee-Thorp J A 1999 Alteration of Enamel Carbonate Environments during Fossilisation;J. Archaeol. Sci. 26 143–150

    Article  Google Scholar 

  • Sponheimer M, Lee-Thorp J A, Reed K and De Ruiter D J 2003 Isotopic ecology of the Makapansgat Limeworks Vertebrate Fauna;J. Vertebr. Paleontol. (in press)

  • Sponheimer M, Reed K and Lee-Thorp J A 1999 Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: a case study from the Makapansgat Limeworks hominin locality;J. Hum. Evol. 36 705–718

    Article  PubMed  CAS  Google Scholar 

  • Sponheimer M, Reed K and Lee-Thorp J A 2001 Isotopic palaeoecology of Makapansgat Limeworks Perissodactyla;S. Afr. J. Sci. 97 327–329

    CAS  Google Scholar 

  • Stuart-Williams H L Q and Schwarcz H P 1997 Oxygen isotopic determination of climate variation using phosphate from beaver bone, tooth enamel, and dentine;Geochem. Cosmochim. Acta 61 2539–2550

    Article  CAS  Google Scholar 

  • Suga S 1982 Progressive Mineralisation Pattern of Developing Enamel During the Maturation Stage;J. Dental Res. 61 (Special Issue) 1532–1542

    Google Scholar 

  • Zazzo A, Bocherens H, Brunet M, Beauvilain A, Billiou D, Mackaye H T, Vignaud P and Mariotti A 2000 Herbivore paleodiet and paleoenvironment changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate;Paleobiology 26 294–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara A. Franz-Odendaal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz-Odendaal, T.A., Lee-Thorp, J.A. & Chinsamy, A. Insights from stable light isotopes on enamel defects and weaning in Pliocene herbivores. J Biosci 28, 765–773 (2003). https://doi.org/10.1007/BF02708437

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708437

Keywords

Navigation