Skip to main content
Log in

Interactions among endophytic bacteria and fungi: Effects and potentials

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from rice (Oryza sativa) used as the test plant produced two types of interactions; biofilms (bacteria attached to mycelia) and mixed cultures with no such attachments. Acidity, as measured by pH in cultures with biofilms was higher than that of fungi alone, bacteria alone or the mixed cultures. Production of indoleacetic acid like substances (IAAS) of biofilms was higher than that of mixed cultures, fungi or bacteria. Bacteria and fungi produced higher quantities of IAAS than mixed cultures. In mixed cultures, the potential of IAAS production of resident microbes was reduced considerably. There was a negative relationship between IAAS and pH of the biofilms, indicating that IAAS was the main contributor to the acidity. However, such a relationship was not observed in mixed cultures. Microbial acid production is important for suppressing plant pathogens. Thus the biofilm formation in endophytic environment seems to be very important for healthy and improved plant growth. However, it is unlikely that an interaction among endophytes takes place naturally in the endophytic environment, due to physical barriers of plant tissues. Further, critical cell density dependant quorum sensing that leads to biofilm formation may not occur in the endophytic environment as there is a limited space. As suchin vitro production and application of beneficial biofilmed inocula of endophytes are important for improved plant production in any agro-ecosystem. The conventional practice of plant inoculation with monocultures or mixed cultures of effective microbes may not give the highest microbial effect, which may only be achieved by biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IAAS:

Indoleacetic acid like substances

SDA:

sabouraud dextrose agar

TSA:

tryptic soy agar

YMB:

yeast manitol broth

References

  • Antoun H, Beauchamp C J, Goussard N, Chabot R and Lalande R 1998 Potential ofRhizobium andBradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.);Plant Soil 204 57–67

    Article  CAS  Google Scholar 

  • Arnold A E, Meffa L C, Kyollo D, Rojas E I, Maynard Z, Robbins N and Herre E A 2003 Fungal endophytes limit pathogen damage in a tropical tree;Proc. Natl. Acad. Sci. USA 100 15649–15654

    Article  CAS  Google Scholar 

  • Bai Y, D’Aoust F, Smith D L and Driscoll B T 2002 Isolation of plant-growth-promotingBacillus strains from soybean root nodules;Can. J. Microbiol. 48 230–238

    Article  CAS  Google Scholar 

  • Barraquio W L, Segubre E M, Gonzalez MAS, Verma S C, James E K, Ladha J K and Tripathi A K 2000 Diazotrophic entetrobacteria: what is their role in the rhizosphere of rice?; inThe quest for nitrogen fixation in rice (eds) J K Ladha and P M Reddy (Los Banos: IRRI) pp 93–118

    Google Scholar 

  • Belesky D P and Malinowski D P 2000 Abiotic stresses and morphological plasticity and chemical adaptations ofNeotyphodium-infected tall fescue plants; inMicrobial endophytes (eds) C W Bacon and J F White Jr (New York: Marcel Dekker) pp 455–484

    Google Scholar 

  • Biswas J C, Ladha J K, Dazzo F B, Yanni Y G and Rolfe B G 2000 Rhizobial inoculation influences seedling vigor and yield of rice;Agron. J. 92 880–886

    Article  Google Scholar 

  • Browning M, Dawson C, Alm S R, Gorres J H and Amador J A 2004 Differential effects of butyric acid on nematodes from four trophic groups;Appl. Soil Ecol. 27 47–54

    Article  Google Scholar 

  • Browning M, Wallace D B, Dawson C, Alma S R and Amador J A 2006 Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries;Soil Biol. Biochem. 38 401–404

    Article  CAS  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P and Dreyfus B 2000 Photosynthetic bradyrhizobia are natural endophytes of the African wild riceOryza breviligulata;Appl. Environ. Microbiol. 66 5437–5447

    Article  CAS  Google Scholar 

  • Clay K 1987 Effects of fungal endophytes on the seed and seedling biology ofLolium perenne andFestuca arundinacea;Oecologia 73 358–362

    Article  CAS  Google Scholar 

  • Clay K and Schardl C 2002 Evolutionary origins and ecological consequences of endophyte symbiosis with grasses;Am. Nat. 160 99–127

    Article  Google Scholar 

  • Collins C H, Lyne P M and Grange J M 1989Collins and Lyne’s microbial methods 6th edition (London: Butter-worths) p. 95

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C and Barka E A 2005 Endophytic colonization ofVitis vinifera L. by plant growth-promoting bacteriumBurkholderia sp. strain PsJN;Appl. Environ. Microbiol. 71 1685–1693

    Article  CAS  Google Scholar 

  • Coombs J T and Franco C M M 2003 Visualization of an endophyticStreptomyces species in wheat seed;Appl. Environ. Microbiol. 69 4260–4262

    Article  CAS  Google Scholar 

  • Costa J M and Loper J E 1994 Characterization of siderophore production by the biological control agentEnterobacter cloacae;Mol. Plant-Microbe Interact. 7 440–448

    Article  CAS  Google Scholar 

  • Engelhard M, Hurek T and Reinhold-Hurek B 2000 Preferential occurrence of diazotrophic endophytes,Azoarcus spp., in wild rice species and land races ofOryza sativa in comparison with modern races;Environ. Microbiol. 2 131–141

    Article  CAS  Google Scholar 

  • Ezra D, Hess W M and Strobel G A 2004 New endophytic isolates ofMuscodor albus, a volatile-antibiotic-producing fungus;Microbiology 150 4023–4031

    Article  CAS  Google Scholar 

  • Fisher P J and Petrini O 1992 Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.);New Phytol. 120 137–143

    Article  Google Scholar 

  • Gordon S A and Weber R P 1951 Colorimetric estimation of indoleacetic acid;Plant Physiol. 26192–195

    Article  CAS  Google Scholar 

  • Gyaneshwar P, James E K, Mathan N, Reddy P M, Reinhold-Hurek B and Ladha J K 2001 Endophytic colonization of rice by a diazotrophic strain ofSerratia marcescens;J. Bacteriol. 183 2634–2645

    Article  CAS  Google Scholar 

  • Höflich G 2000 Colonization and growth promotion of non-legumes byRhizobium bacteria. Microbial Biosystems: New Frontiers; inProceedings of the 8th International Symposium on Microbial Ecology (eds) C R Bell, M Brylinsky and P Johnson-Green (Halifax: Atlantic Canada Society for Microbial Ecology) pp 827–830

    Google Scholar 

  • Huerk T, Reinhold-Huerk B, Van Montagu M and Kellenberger E 1994 Root colonization and systemic spreading ofAzoarcus sp. Strain BH72 in grasses;J. Bacteriol. 176 1913–1923

    Article  Google Scholar 

  • James E K, Reis V M, Olivares F L, Baldani J I and Dobereiner J 1994 Infection of sugar cane by the nitrogen-fixing bacteriumAcetobacter diazotrophicus;J. Exp. Bot. 45 757–766

    Article  CAS  Google Scholar 

  • Jayasinghearachchi H S and Seneviratne G 2004 A bradyrhizo-bial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean;Biol. Fertil. Soils 40 432–434

    Article  CAS  Google Scholar 

  • Jayasinghearachchi H S and Seneviratne G 2005 Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms;Soil Biol. Biochem. 38 405–408

    Article  Google Scholar 

  • Johri B N 2006 Endophytes to the rescue of plants;Curr. Sci. 90 1315–1316

    Google Scholar 

  • Kevin V J 2003 Plant growth promoting rhizobacteria as biofertilizers;Plant Soil 255 571–586

    Article  Google Scholar 

  • Kirchhof G, Reis V M, Baldani J I, Eckart B, Dobereiner J and Hartman A 1997 Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants;Plant Soil 194 45–56

    Article  CAS  Google Scholar 

  • Kong K F, Vuong C and Otto M 2006 Staphylococcus quorum sensing in biofilm formation and infection;Int. J. Med. Microbiol. 296 133–139

    Article  CAS  Google Scholar 

  • Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla J E and Kennedy C 2004 Indole-3-Acetic acid biosynthesis is deficient inGluconacetobacter diazotrophicus strains with mutations inCytochrome c biogenesis genes;J. Bacteriol. 186 5384–5391

    Article  CAS  Google Scholar 

  • Malinowski D P and Belesky D P 1999 Neotyphodium coenophialum-endophyte infection affects the ability oftall fescue to use sparingly available phosphorus;J. Plant Nutr. 22 835–853

    Article  CAS  Google Scholar 

  • Olivares F L, Baldani V L D, Reis V M, Baldani J I and Dobereiner J 1996 Occurrence of the endophytic diazotrophsHerbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae;Biol. Fertil. Soils 21 197–200

    Article  Google Scholar 

  • Patten C L and Glick B R 2002 Role ofPseudomonas putida indoleacetic acid in development of the host plant root system;Appl. Environ. Microbiol. 68 3795–3801

    Article  CAS  Google Scholar 

  • Pope DG 1978 Does indoleacetic acid promote growth via cell wall acidification?;Planta 140 137–142

    Article  CAS  Google Scholar 

  • Redman R S, Sheehan K B, Stout R G, Rodriguez R J and Henson J M 2002 Plant thermotolerance conferred by fungal endophyte;Science 298 1581

    Article  CAS  Google Scholar 

  • Rodelas B, Salmeron V, Martinez-Toledo M V, Gonzalez-Lepz J 1993 Production of vitamins byAzospirillum brazilense in chemically-defined media;Plant Soil 153 97–101

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martinez L, Silva J and Martinez-Romero E 2004Klebsiella variicola, a novel species with clinical and plant-associated isolates;Syst. Appl. Microbiol. 27 27–35

    Article  CAS  Google Scholar 

  • Saikkonen K, Helander M and Faeth S H 2004 Fungal endophytes: hitchhikers of the green world; inPlant microbiology (eds) M Gillings and A Holmes (Oxford: BIOS Scientific Publishers) pp 77–95

    Google Scholar 

  • Sandhiya G S, Sugitha T C K, Balachandar D and Kumar K 2005 Endophytic colonization and in planta nitrogen fixation by a diazotrophicSerratia sp. in rice;Indian J. Exp. Biol. 43 802–807

    CAS  PubMed  Google Scholar 

  • Sarwar M, Arshad M, Martens D A and Frankenberger Jr W T 1992 Tryptophan-dependent biosynthesis of auxins in soil;Plant Soil 147 207–215

    Article  CAS  Google Scholar 

  • SAS 1998SAS/STAT User’s guide Release 6.03 (Cary: SAS Inst. Inc.)

    Google Scholar 

  • Seneviratne G and Indrasena I K 2006 Nitrogen fixation in lichens is important for improved rock weathering;J. Biosci. 31 639–643

    Article  Google Scholar 

  • Seneviratne G, Tennakoon N S, Weerasekara M L M A W and Nandasena K A 2006 Polyethylene biodegradation by a developedPenicillium-Bacillus biofilm;Curr. Sci. 90 20–21

    CAS  Google Scholar 

  • Sevilla M, Burris R H, Gunapala N and Kennedy C 2001 Comparison of benefit to sugarcane plant growth and15N2 incorporation following inoculation of sterile plants withAcetobacter diazotrophicus wild-type and Nif-mutant strains;Mol. Plant-Microbe Interact. 14 358–366

    Article  CAS  Google Scholar 

  • Somasegaran P and Hoben H J 1994Handbook for rhizobia: Methods in Legume-Rhizobium technology (New York: Springer -Verlag) p. 399

    Book  Google Scholar 

  • Taechowisan T, Chunhua L U, Shen Y and Lumyong S 2005 Secondary metabolites from endophyticStreptomyces aureofaciens CMUAc130 and their antifungal activity;Microbiology 151 1691–1695

    Article  CAS  Google Scholar 

  • Takijima Y 1964 Studies on the mechanism of root damage of rice plants in the peat paddy fields;Soil Sci. Plant Nutr. 10 231–238

    Google Scholar 

  • Tejera N, Ortega E, Rodes R and Lluch C 2006 Nitrogen compounds in the apoplastic sap of sugarcane stem: Some implications in the association with endophytes;J. Plant Physiol. 163 80–85

    Article  CAS  Google Scholar 

  • Tian X L, Cao L X, Tan H M, Zeng Q G, Jial Y Y, Han W Q and Zhou S N 2004 Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activitiesin vitro;World J. Microbiol. Biotechnol. 20 303–309

    Article  Google Scholar 

  • Wakelin S A, Warren R A, Harvey P R and Ryder M H 2004 Phosphate solubilization byPenicillium spp. closely associated with wheat roots;Biol. Fertil. Soils 40 36–43

    Article  CAS  Google Scholar 

  • Will M E and Sylvia D M 1990 Interaction of rhizosphere bacteria, fertilizer and vesicular-arbuscular mycorrhizal fungi with zea oats;Appl. Environ. Microbiol. 56 2073–2079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson D 1993 Fungal endophytes: out of sight but should not be out of mind?;Oikos 68 379–384

    Article  Google Scholar 

  • Yanni Y G, Rizk R Y, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt T M, Mateos P F, Ladha J K and Dazzo F B 1997 Natural endophytic association betweenRhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth;Plant Soil. 194 99–114

    Article  CAS  Google Scholar 

  • You C and Zhou F 1989 Non-nodular endohizospheric nitrogen fixation in wetland rice;Can. J. Microbiol. 35 403–408

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamini Seneviratne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandara, W.M.M.S., Seneviratne, G. & Kulasooriya, S.A. Interactions among endophytic bacteria and fungi: Effects and potentials. J. Biosci. 31, 645–650 (2006). https://doi.org/10.1007/BF02708417

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708417

Keywords

Navigation