Skip to main content
Log in

A conceptual DFT approach towards analysing toxicity

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The applicability of DFT-based descriptors for the development of toxicological structure-activity relationships is assessed. Emphasis in the present study is on the quality of DFT-based descriptors for the development of toxicological QSARs and, more specifically, on the potential of the electrophilicity concept in predicting toxicity of benzidine derivatives and the series of polyaromatic hydrocarbons (PAH) expressed in terms of their biological activity data (pIC 50). First, two benzidine derivatives, which act as electron-donating agents in their interactions with biomolecules are considered. Overall toxicity in general and the most probable site of reactivity in particular are effectively described by the global and local electrophilicity parameters respectively. Interaction of two benzidine derivatives with nucleic acid (NA) bases/selected base pairs is determined using Parr’s charge transfer formula. The experimental biological activity data (pIC 50) for the family of PAH, namely polychlorinated dibenzofurans (PCDF), poly-halogenated dibenzo-p-dioxins (PHDD) and polychlorinated biphenyls (PCB) are taken as dependent variables and the HF energy (E), along with DFT-based global and local descriptors, viz., electrophilicity index (Ω) and local electrophilic power (Ω+) respectively are taken as independent variables. Fairly good correlation is obtained showing the significance of the selected descriptors in the QSAR on toxins that act as electron acceptors in the presence of biomolecules. Effects of population analysis schemes in the calculation of Fukui functions as well as that of solvation are probed. Similarly, some electron-donor aliphatic amines are studied in the present work. We see that global and local electrophilicities along with the HF energy are adequate in explaining the toxicity of several substances, both electron donors or acceptors when they interact with biosystems, in gas as well as solution phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parr R G 1983Annu. Rev. Phys. Chem. 34 631

    Article  CAS  Google Scholar 

  2. Parr R G and Yang W 1989Density functional theory of atoms and molecules (New York: Oxford University Press)

    Google Scholar 

  3. Chermette H 1999J. Comput. Chem. 20 129

    Article  CAS  Google Scholar 

  4. Geerlings P, De Proft F and Langenaeker W 2003Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  5. Chattaraj P K, Nath S and Maiti B 2003 Reactivity descriptors. InComputational medicinal chemistry and drug discovery (eds) J Tollenaere, P Bultinck, H D Winter and W Langenaeker (New York: Marcel Dekker) ch. 11, pp 295–322

    Google Scholar 

  6. Parr R G, Szentpaly L V and Liu S 1999J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  7. Maynard A T and Covell D G 2001J. Am. Chem. Soc. 123 1047

    Article  CAS  Google Scholar 

  8. Chattaraj P K, Maiti B and Sarkar U 2003J. Phys. Chem. A107 4973. The profiles of philicity and related local descriptors along the reaction path of a thermoneutral reaction have been reported recently [Chattaraj P K and Roy D R 2005J. Phys. Chem. A109 3771] where the calculations have been done within a supermolecular framework and by using Mulliken charges. Corresponding analysis based on Mulliken population for this reaction as well as some exo (endo) thermic reactions will appear shortly

    Google Scholar 

  9. Thanikaivelan P, Subramanian V, Raghava Rao J and Nair B U 2000Chem. Phys. Lett. 323 59

    Article  CAS  Google Scholar 

  10. Parthasarathi R, Subramanian V, Roy D R and Chattaraj P K 2004Bioorg. Med. Chem. 12 5533

    Article  CAS  Google Scholar 

  11. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B and Chattaraj P K 2003J. Phys. Chem. A107 10346

    Google Scholar 

  12. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B and Chattaraj P K 2004Curr. Sci. 86 535

    CAS  Google Scholar 

  13. Parthasarathi R, Padmanabhan J, Subramanian V, Sarkar U, Maiti B and Chattaraj P K 2003Int. Electron. J. Mol. Des. 2 798

    CAS  Google Scholar 

  14. Guohai L and Guozhen W 1987J. Mol. Struct. (Theochem) 161 75

    Google Scholar 

  15. Hester R E and Williams K P J 1981J. Chem. Soc. Faraday Trans. II 77 541

    Article  CAS  Google Scholar 

  16. Brown M A and DeVito S C 1993C. R. Environ. Sci. Technol. 23 249

    Article  CAS  Google Scholar 

  17. Myslak Z W, Bolt H M and Brockmann W 1991Am. J. Ind. Med. 19 705

    Article  CAS  Google Scholar 

  18. Walker M K and Peterson R E 1991Aquat. Toxicol. 21 219

    Article  CAS  Google Scholar 

  19. Zabel E W, Cook P M and Peterson R E 1995Aquat. Toxicol. 31 315

    Article  CAS  Google Scholar 

  20. Hutzinger O, Blumich M J, Berg M V D and Olie K 1985Chemosphere 14 581

    Article  CAS  Google Scholar 

  21. Olie K, Vermeulen P L and Hutzinger O 1977Chemosphere 8 455

    Article  Google Scholar 

  22. Marklund S, Rappe C, Tsyklind M and Egebäck K E 1987Chemosphere 16 29

    Article  CAS  Google Scholar 

  23. Lohmann R and Jones K C 1998Sci. Total Environ. 219 53

    Article  CAS  Google Scholar 

  24. Safe S H 1994CRC Crit. Rev. Toxicol 24 87

    CAS  Google Scholar 

  25. Van den Berg Met al 1998Environ. Health. Perspect. 106 775

    Article  Google Scholar 

  26. Oakley G G, Devanaboyina U S, Robertson L W and Gupta R C 1996Chem. Res. Toxicol. 9 1285

    Article  CAS  Google Scholar 

  27. Erickson M D 1986Analytical chemistry of PCBs (Boston: Butterworths)

    Google Scholar 

  28. Silberhorn E M, Glauert H P and Robertson L W 1990CRC Crit. Rev. Toxicol. 20 439

    Article  CAS  Google Scholar 

  29. Miller G, Sontum S and Crosby D G 1977Bull. Environ. Contam. Toxicol. 18 611

    Article  CAS  Google Scholar 

  30. Poland A, Palen D and Glover E 1982Nature (London) 300 271

    Article  CAS  Google Scholar 

  31. Waller C L and McKinney J D 1995Chem. Res. Toxicol. 8 847

    Article  CAS  Google Scholar 

  32. Schultz T W 1997Toxicol. Methods 7 289

    Article  CAS  Google Scholar 

  33. Pearson R G 1997Chemical hardness: Applications from molecules to solids (Weinheim: VCH-Wiley)

    Google Scholar 

  34. Iczkowski R P and Margrave J L 1961J. Am. Chem. Soc. 83 3547

    Article  CAS  Google Scholar 

  35. Parr R G and Yang W 1984J. Am. Chem. Soc. 106 4049

    Article  CAS  Google Scholar 

  36. Fukui K 1987Science 218 747

    Article  Google Scholar 

  37. Yang W and Mortier W J 1986J. Am. Chem. Soc. 108 5708

    Article  CAS  Google Scholar 

  38. Lee C, Yang W and Parr R G 1988J. Mol. Struct. (Theochem.) 163 305

    Article  Google Scholar 

  39. Cioslowski J, Martinov M and Mixon S T 1993J. Phys. Chem. 97 10948

    Article  CAS  Google Scholar 

  40. Parr R G and Pearson R G 1983J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  41. Becke A D 1998Phys. Rev. A38 3098

    Google Scholar 

  42. Hariharan P C and Pople J A 1973Theor. Chim. Acta 28 213

    Article  CAS  Google Scholar 

  43. Lee C, Yang W and Parr R G 1988Phys. Rev. B37 785

    Google Scholar 

  44. Gaussian 03, & Gaussian 98, Revision B.03; Gaussian, Inc. Pittsburgh, PA

  45. Hirshfeld F L 1977Theor. Chim. Acta 44 129

    Article  CAS  Google Scholar 

  46. DMOL3, Accelrys, Inc. San Diego, California.

  47. Bader R F W 1990Atoms in molecules: A quantum theory (Oxford: Clarendon)

    Google Scholar 

  48. Biegler-Konig F, Schonbohm J, Derdau R, Bayles D and Bader R W F 2000 AIM 2000, version 1.0; Bielefeld, Germany

  49. Barone V, Cossi M, Mennucci B and Tomasi J 1997J. Chem. Phys. 107 3210

    Article  CAS  Google Scholar 

  50. Mulliken R S 1955J. Chem. Phys. 23 1833

    Article  CAS  Google Scholar 

  51. Reed A E and Weinhold F 1983J. Chem. Phys. 78 4066

    Article  CAS  Google Scholar 

  52. Reed A E, Weinstock R B and Weinhold F 1985J Chem Phys. 83 735

    Article  CAS  Google Scholar 

  53. MATLAB 1999 The Math Works, Natick, USA

  54. Roy D R, Parthasarathi R, Maiti B, Subramanian V and Chattaraj P K 2005Bioorg. Med. Chem. 13 3405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. K. Chattaraj or V. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, U., Roy, D.R., Chattaraj, P.K. et al. A conceptual DFT approach towards analysing toxicity. J Chem Sci 117, 599–612 (2005). https://doi.org/10.1007/BF02708367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708367

Keywords

Navigation