Skip to main content
Log in

Dynamic behavior of chemical reactivity indices in density functional theory: A Bohn-Oppenheimer quantum molecular dynamics study

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Dynamic behaviors of chemical concepts in density functional theory such as frontier orbitals (HOMO/LUMO), chemical potential, hardness, and electrophilicity index have been investigated in this work in the context of Bohn-Oppenheimer quantum molecular dynamics in association with molecular conformation changes. Exemplary molecular systems like CH +5 , Cl (H2O)30 and Ca2+ (H2O)15 are studied at 300 K in the gas phase, demonstrating that HOMO is more dynamic than LUMO, chemical potential and hardness often fluctuate concurrently. It is argued that DFT concepts and indices may serve as a good framework to understand molecular conformation changes as well as other dynamic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parr R G and Yang W 1989Density functional theory of atoms and molecules (New York: Oxford University Press)

    Google Scholar 

  2. Geerlings P, De Proft F and Langenaeker W 2003Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  3. Parr R G, Von Szentpaly L and Liu S 1999J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  4. De Proft F and Geerlings P 2001Chem. Rev. 101 1451

    Article  CAS  Google Scholar 

  5. Chattaraj PK and Roy D RJ. Phys. Chem. A (in press)

  6. Chattaraj P K 1992Int. J. Quantum Chem. 41 845

    Article  CAS  Google Scholar 

  7. Chattaraj P K and Nath S 1994Int. J. Quantum Chem. 49 705

    Article  CAS  Google Scholar 

  8. Chattaraj P K and Nath S 1994Chem. Phys. Lett. 217 342

    Article  Google Scholar 

  9. Chattaraj P K and Sengupta S 1996J. Phys. Chem. 100 16126

    Article  CAS  Google Scholar 

  10. Chattaraj P K and Sengupta S 1997J. Phys. Chem. A101 7893

    Google Scholar 

  11. Chattaraj P K and Maiti B 2001J. Phys. Chem. 105 169

    CAS  Google Scholar 

  12. Chattaraj P K and Maiti B 2004J. Phys. Chem. 108 658

    CAS  Google Scholar 

  13. Vuilleumier R and Sprik M 2001J. Chem. Phys. 115 3454

    Article  CAS  Google Scholar 

  14. Car R and Parinello M 1985Phys. Rev. Lett. 55 2471

    Article  CAS  Google Scholar 

  15. York D M and Yang W 1996J. Chem. Phys. 104 159

    Article  CAS  Google Scholar 

  16. Bolton K, Hase W L and Peshlherbe G H 1998Modern methods for multidimensional dynamics computation in chemistry (ed.) D L Thompson (Singapore: World Scientific) p. 143

    Google Scholar 

  17. Aprà Eet al 2005NWChem. A computational chemistry package for parallel computers version 47, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA

    Google Scholar 

  18. Kendall R Aet al 2000Comput. Phys. Commun. 128 260

    Article  CAS  Google Scholar 

  19. Parr R G, Donnelly R A, Levy M and Palke W E 1978J. Chem. Phys. 68 3801

    Article  CAS  Google Scholar 

  20. Mulliken R S 1934J. Chem. Phys. 2 782

    Article  CAS  Google Scholar 

  21. Parr R G and Pearson RG 1983J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  22. Koopmans T A 1933Physica 1 104

    Article  CAS  Google Scholar 

  23. Parr R G, Von Szentpaly L and Liu S 1999J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  24. Gerlich D 2005Chem. Phys. Phys. Chem. 7 1583

    Article  CAS  Google Scholar 

  25. Brown A, Mccoy A B, Braams B J, Jin Z and Bowman J M 2004J. Chem. Phys. 121 4105

    Article  CAS  Google Scholar 

  26. Mccoy A B, Braams B J, Brown A, Huang X C, Jin Z and Bowman J M 2004J. Phys. Chem. A108 4991

    Google Scholar 

  27. Schreiner P R 2000Angew. Chem. Int. Ed. 39 3239

    Article  CAS  Google Scholar 

  28. White E T, Tang J and Oka T 1999Science 284 135

    Article  CAS  Google Scholar 

  29. Herce D H, Perera L, Darden T A and Sagui C 2005J. Chem. Phys. 122 024513

    Article  CAS  Google Scholar 

  30. Markovich G, Perera L, Berkowitz M L and Cheshnovsky O 1996J. Chem. Phys. 105 2675

    Article  CAS  Google Scholar 

  31. Shevkunov S V, Lukyanov SI, Leyssale JM and Millot C 2005Chem. Phys. 310 97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S. Dynamic behavior of chemical reactivity indices in density functional theory: A Bohn-Oppenheimer quantum molecular dynamics study. J Chem Sci 117, 477–483 (2005). https://doi.org/10.1007/BF02708352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708352

Keywords

Navigation