Skip to main content
Log in

The electron-propagator approach to conceptual density-functional theory

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Both electron propagator theory and density-functional theory provide conceptually useful information about chemical reactivity and, most especially, charge transfer. This paper elucidates the qualitative and quantitative links between the two theories, with emphasis on how the reactivity indicators of conceptual density-functional theory can be derived from electron propagator theory. Electron propagator theory could be used to compute reactivity indices with high accuracy at reasonable computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayers P W and Yang W 2003Density functional theory (eds) P Bultinck, H de Winter, W Langenaeker and J P Tollenaere (New York: Dekker) pp 571–616

    Google Scholar 

  2. Kohn W, Becke A D and Parr R G 1996J. Phys. Chem. 100 12974

    Article  CAS  Google Scholar 

  3. Parr R G and Yang W 1989Density-functional theory of atoms and molecules (New York: Oxford University Press)

    Google Scholar 

  4. Dreizler R M and Gross E K U 1990Density functional theory: An approach to the quantum manybody problem (Berlin: Springer-Verlag)

    Google Scholar 

  5. Kohn W 1999Rev. Mod. Phys. 71 1253

    Article  CAS  Google Scholar 

  6. Geerlings P, De Proft F and Langenaeker W 2003Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  7. Kohn W and Sham L JPhys. Rev. 140 A1133-A1138

  8. McWeeny R and Pickup B T 1980Rep. Prog. Phys. 43 1065

    Article  Google Scholar 

  9. Herrera B, Dolgounitcheva O, Zakrzewski V G, Toro-Labbe A and Ortiz J V 2004J. Phys. Chem. A108 11703

    Google Scholar 

  10. Ortiz J V 1999Adv. Quantum Chem. 35 33

    CAS  Google Scholar 

  11. Ohrn Y and Born G 1981Adv. Quantum Chem. 13 1

    Article  CAS  Google Scholar 

  12. Yang W, Parr R G and Pucci R 1984J. Chem. Phys. 81 2862

    Article  CAS  Google Scholar 

  13. Parr R G and Yang W 1984J. Am. Chem. Soc. 106 4049

    Article  CAS  Google Scholar 

  14. Gritsenko O V, Ensing B, Schipper P R T and Baerends E J 2000J. Phys. Chem. A104 8558

    Google Scholar 

  15. Zhang Y and Yang W 1998J. Chem. Phys. 109 2604

    Article  CAS  Google Scholar 

  16. De Proft F, Vivas-Reyes R, Peeters A, Van Alsenoy C and Geerlings P 2003J. Comput. Chem. 24 463

    Article  CAS  Google Scholar 

  17. Ayers P W, Anderson J S M and Bartolotti L J 2004Int. J. Quantum Chem. 101 520

    Article  CAS  Google Scholar 

  18. Hohenberg P and Kohn W1964Phys. Rev. 136 B864-B871

    Article  Google Scholar 

  19. Yang W T, Ayers P W and Wu Q 2004Phys. Rev. Lett. 92

  20. Freed K F and Levy M 1983J. Chem. Phys. 77 396

    Article  Google Scholar 

  21. Levy M 1979Proc. Natl. Acad. Sci. USA 76 6062

    Article  CAS  Google Scholar 

  22. Lieb E H 1983Int. J. Quantum Chem. 24 243

    Article  CAS  Google Scholar 

  23. Ayers P W, Lucks J B and Parr R G 2002Acta Chim. Phys. Debricina 34–35 223

    Google Scholar 

  24. Parr R G, Donnelly R A, Levy M and Palke W E 1978J. Chem. Phys. 68 3801

    Article  CAS  Google Scholar 

  25. Itzkowski R P and Margrave J L 1961J. Am. Chem. Soc. 83 3547

    Article  Google Scholar 

  26. Mulliken R S 1934J. Chem. Phys. 2 782

    Article  CAS  Google Scholar 

  27. Senet P 1996J. Chem. Phys. 105 6471

    Article  CAS  Google Scholar 

  28. Senet P 1997J. Chem. Phys. 107 2516

    Article  CAS  Google Scholar 

  29. Ayers P W and Parr R G 2000J. Am. Chem. Soc. 122 2010

    Article  CAS  Google Scholar 

  30. Ayers P W and Parr R G 2001J. Am. Chem. Soc. 123 2007

    Article  CAS  Google Scholar 

  31. Nalewajski R F 1983J. Chem. Phys. 78 6112

    Article  CAS  Google Scholar 

  32. Klopman G 1968J. Am. Chem. Soc. 90 223

    Article  CAS  Google Scholar 

  33. Parr R G and Pearson R G 1983J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  34. Sanderson R T 1951Science 114 670

    Article  CAS  Google Scholar 

  35. Pearson R G 1987J. Chem. Educ. 64 561

    CAS  Google Scholar 

  36. Pearson R G 1999J. Chem. Educ. 76 267

    Article  CAS  Google Scholar 

  37. Parr R G and Chattaraj P K 1991J. Am. Chem. Soc. 113 1854

    Article  CAS  Google Scholar 

  38. Chattaraj P K 1996Proc. Indian Natl. Sci. Acad. A62 513

    Google Scholar 

  39. Pearson R G 1963J. Am. Chem. Soc. 85 3533

    Article  CAS  Google Scholar 

  40. Chattaraj P K, Lee H and Parr R G 1991J. Am. Chem. Soc. 113 1855

    Article  CAS  Google Scholar 

  41. Ayers P W 2005J. Chem. Phys. 122 141102

    Article  CAS  Google Scholar 

  42. Parr R G, Von Szentpaly L and Liu S B 1999J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  43. Chattaraj P K and Maiti B 2001J. Phys. Chem. A105 169

    Google Scholar 

  44. Ayers P W, Anderson J S M and Bartolotti L J 2005Int. J. Quantum Chem. 101 520

    Article  CAS  Google Scholar 

  45. Ayers P W, Anderson J S M, Rodriguez J I and Jawed Z 2005Phys. Chem. Chem. Phys. 7 1918

    Article  CAS  Google Scholar 

  46. Politzer P and Truhlar D 1981Chemical applications of atomic and molecular electrostatic potentials (New York: Plenum)

    Google Scholar 

  47. Ayers P W and Levy M 2000Theor. Chem. Acc. 103 353

    CAS  Google Scholar 

  48. Bartolotti L J and Ayers P W 2005J. Phys. Chem. A109 1146

    Google Scholar 

  49. Flurchick K and Bartolotti L 1995J. Mol. Graph. 13 10

    Article  CAS  Google Scholar 

  50. Langenaeker W, Demel K and Geerlings P 1991Theochem 80 329

    Article  CAS  Google Scholar 

  51. Perdew J P, Parr R G, Levy M and Balduz Jr J L 1982Phys. Rev. Lett. 49 1691

    Article  CAS  Google Scholar 

  52. Yang W, Zhang Y and Ayers P W 2000Phys. Rev. Lett. 84 5172

    Article  CAS  Google Scholar 

  53. Gritsenko O V, Braida B and Baerends E J 2003J. Chem. Phys. 119 1937

    Article  CAS  Google Scholar 

  54. Chong D P, Gritsenko O V and Baerends E J 2002J. Chem. Phys. 116 1760

    Article  CAS  Google Scholar 

  55. Savin A, Umrigar C J and Gonze X 1998Chem. Phys. Lett. 288 391

    Article  CAS  Google Scholar 

  56. Levine Z H and Allan D C 1989Phys. Rev. Lett. 63 1719

    Article  CAS  Google Scholar 

  57. Godby R W, Schluter M and Sham L JPhys. Rev. B36 6497

  58. Godby R W, Schluter M and Sham L J 1988Phys. Rev. B37 10159

    Google Scholar 

  59. Sham L J and Schluter M 1983Phys. Rev. Lett. 51 1888

    Article  Google Scholar 

  60. Sham L J and Schluter M 1985Phys. Rev. B32 3883

    Google Scholar 

  61. Duffy P, Chong D P, Casida M E and Salahub D R 1994Phys. Rev. A50 4707

    Google Scholar 

  62. Stillinger F H 2000J. Chem. Phys. 112 9711

    Article  CAS  Google Scholar 

  63. Berkowitz M and Parr R G 1988J. Chem. Phys. 88 2554

    Article  CAS  Google Scholar 

  64. McWeeny R 1989Methods of molecular quantum mechanics 2nd edn (London: Academic Press)

    Google Scholar 

  65. Ayers P W 2001Theor. Chem. Acc. 106 271

    Article  CAS  Google Scholar 

  66. Cioslowski J and Ortiz J V 1992J. Chem. Phys. 96 8379

    Article  CAS  Google Scholar 

  67. Ortiz J V 2000J. Chem. Phys. 112 56

    Article  CAS  Google Scholar 

  68. Ayers P W and Parr R G 2000J. Phys. Chem. A104 2211

    Google Scholar 

  69. Ortiz J V 1993Chem. Phys. Lett. 216 319

    Article  CAS  Google Scholar 

  70. Ortiz J V 1993Chem. Phys. Lett. 214 467

    Article  CAS  Google Scholar 

  71. Ortiz J V 1993J. Chem. Phys. 99 6716

    Article  CAS  Google Scholar 

  72. Ortiz J V 1993J. Chem. Phys. 99 6727

    Article  CAS  Google Scholar 

  73. Ortiz J V 1992J. Chem. Phys. 97 7531

    Article  CAS  Google Scholar 

  74. Allen L C 1960Phys. Rev. 118 167

    Article  CAS  Google Scholar 

  75. Peng H W 1941Proc. R. Soc. London A178 499

    CAS  Google Scholar 

  76. Stevens R M, Pitzer R M and Lipscomb W N 1963J. Chem. Phys. 38 550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melin, J., Ayers, P.W. & Ortiz, J.V. The electron-propagator approach to conceptual density-functional theory. J Chem Sci 117, 387–400 (2005). https://doi.org/10.1007/BF02708342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708342

Keywords

Navigation