Skip to main content
Log in

From antiferroelectricity to ferroelectricity in smectic mesophases formed by bent-core molecules

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This contribution gives an overview of ferroelectric switching liquid crystalline phases formed by bent-core molecules. First a description of some general principles behind the mesophase formation within bent-core systems will be given, followed by a short review of the mesophase structures formed by such molecules. Then, different classes of ferroelectric switching bent-core mesogens will be described. This type of switching behaviour has been reported for several subtypes of polar smectic phases (B2, B5, B7 and SmCG) and recently for columnar mesophases. In this discussion particular attention will be made to polyphilic bent-core molecules, composed of three incompatible units, a bent aromatic core, alkyl chains and an oligosiloxane unit. The importance of the decoupling of the layers into microsegregated sublayers for the ferroelectric organisation is discussed. Many of the ferroelectric switching mesophases show dark textures with distinct regions of opposite chirality in their ground states. It is discussed that this might be due to a helical superstructure formed as a result of an escape from macroscopic polar order. Hence, the materials themselves are not ferroelectric in the ground state, but upon alignment within an electric field in the measuring cells the ferroelectric states are stabilised by surface interactions, leading to a ferroelectric switching system. The designing principle was extended to mesogenic dimers with bent-core structural units. For these compounds, depending on the number of dimethylsiloxane units in the spacer either ferroelectric or antiferroelectric switching was observed, whereby the effect of parity is reversed to that observed for conventional calamitic dimesogens. Finally, a carbosilane-based first generation dendrimer is reported. It shows a ferroelectric switching phase, for which a non-correlated organisation of tilted polar smectic layers is proposed (SmCPR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H-S Kitzerow and C Bahr,Chirality in liquid crystals (Springer-Verlag, New York, 2001)

    Google Scholar 

  2. B Pansu,Mod. Phys. Lett. B13, 769 (1999)

    ADS  Google Scholar 

  3. S T Lagerwall,Ferroelectric and antiferroelectric liquid crystals (Wiley VCH, Weinheim, 1999)

    Google Scholar 

  4. S Pensec, F-G Tournilhac, P Bassoul and C Durliat,J. Phys. Chem. 102, 52 (1998)

    Google Scholar 

  5. L M Blinov,Liq. Cryst. 24, 143 (1998)

    Article  Google Scholar 

  6. M Kolbel, T Beyersdorff, X H Cheng, C Tschierske, J Kain and S Diele,J. Am. Chem. Soc. 12, 6809 (2001)

    Article  Google Scholar 

  7. D Vorländer and A Apel,Ber. Dtsch. Chem. Ges. 65, 1101 (1932)

    Article  Google Scholar 

  8. D Vorländer,Ber. Dtsch. Chem. Ges. 62, 2831 (1929)

    Article  Google Scholar 

  9. Y Matsunaga and S Miyamoto,Mol. Cryst. Liq. Cryst. 237, 311 (1993)

    Article  Google Scholar 

  10. T Niori, F Sekine, J Watanabe, T Furukawa and H Takezoe,J. Mater. Chem. 6, 1231 (1996)

    Article  Google Scholar 

  11. Parallel to the work of Nioriet al [9] evidence of polar order was also reported for smectic phases formed by a mixed polymer/monomer system [E A Soto Bustamante, S V Yablonskii, B I Ostrovskii, L A Beresnev, L M Blinov and W Haase,Liq. Cryst. 21, 829 (1996)] and for bent shaped oxadiazole derivatives [K J Semmler, T J Dingemans and E T Samulski,Liq. Cryst. 24, 799 (1998)]

    Article  Google Scholar 

  12. G Pelzl, S Diele and W Weissflog,Adv. Mater. 11, 707 (1999)

    Article  Google Scholar 

  13. J Watanabe, T Niori, T Sekine and H Takezoe,Jpn. J. Appl. Phys. 37, L139 (1998)

    Article  ADS  Google Scholar 

  14. D Shen, A Pegenau, S Diele, I Wirth and C Tschierske,J. Am. Chem. Soc. 122, 1593 (2000)

    Article  Google Scholar 

  15. Y Takanishi, T Izumi, J Watanabe, K Ishikawa, H Takezoe and A Iida,J. Mater. Chem. 9, 2771 (1999)

    Article  Google Scholar 

  16. J Szydlowska, J Mieczkowski, J Matraszek, D W Bruce, E Gorecka, D Pociecha and D Guillon,Phys. Rev. E67, 031702 (2003)

    ADS  Google Scholar 

  17. K Pelz, W Weissflog and S Diele,19th International Liqid Crystal Conference, Edinburgh, 2002, p. 435

  18. B K Sadashiva, V A Raghunathan and R Pratibha,Ferroelectrics 243, 249 (2000)

    Article  Google Scholar 

  19. J C Rouillon, J P Marcerou, M Laguerre, H T Nguyen and M F Achard,J. Mater. Chem. 11, 2946 (1999)

    Article  Google Scholar 

  20. A Eremin, S Diele, G Pelzl, H Nadasi, W Weissflog, J Salfetnikova and H Kresse,Phys. Rev. E64, 051707 (2001)

    ADS  Google Scholar 

  21. J Thisayukta, H Takezoe and J Watanabe,Jpn. J. Appl. Phys. 40, 3277 (2001)

    Article  ADS  Google Scholar 

  22. J Thisayukta, Y Nakayama, S Kawauchi, H Takezoe and J Watanabe,J. Am. Chem. Soc. 122, 74 (2000)

    Article  Google Scholar 

  23. T Sekine, T Niori, M Sone, J Watanabe, S-W Choi, Y Takanishi and H Takezoe,Jpn. J. Appl. Phys. 36, 6455 (1997)

    Article  Google Scholar 

  24. G Pelzl, S Diele, A Jakli, C Lischka, I Wirth and W Weissflog,Liq. Cryst. 26, 135 (1999)

    Article  Google Scholar 

  25. D S S Rao, G G Nair, S K Prasad, S A Nagamani and C V Yelamaggad,Liq. Cryst. 28, 1239 (2001)

    Article  Google Scholar 

  26. J P Bedel, J C Rouillon, J P Marcerou, M Laguerre, H T Nguyen and M F Achard,Liq. Cryst. 27, 1411 (2000)

    Article  Google Scholar 

  27. N Clark, D R Link, D Coleman, W G Jang, J Fernsler, C Boyer, J Zasadzinski, D M Walba, E Körblova and W Weissflog,19th International Liqid Crystal Conference, Edinburgh, 2002, C5

  28. D R Link, G Natale, R Shao, J E Maclennan, N A Clark, E Körblova and D M Walba,Science 278, 1924 (1997)

    Article  ADS  Google Scholar 

  29. T Imase, S Kawauchi and J Watanabe,J. Mol. Struct. 560, 275 (2001)

    Article  Google Scholar 

  30. At the beginning of the research on banana-shaped mesogens the switching behaviour was described as ferroelectric (e.g. ref. [9]), but later on it turned out that all mesophases reported before the year 2000 in fact exhibit antiferroelectric switching behaviour

  31. D M Walba, E Körblova, R Shao, J E Maclennan, D R Link, M A Glaser and N A Clark,Science 288, 2181 (2000)

    Article  ADS  Google Scholar 

  32. H Nadasi, W Weissflog, A Eremin, G Pelzl, S Diele, B Das and S Grande,J. Mater. Chem. 12, 1316 (2002)

    Article  Google Scholar 

  33. R Amaranatha Reddy and B K Sadashiva,J. Mater. Chem. 12, 2627 (2002)

    Article  Google Scholar 

  34. T Matsumoto, A Fukuda, M Johno, Y Motoyama, T Yui, S-S Seomun and M Yamashita,J. Mater. Chem. 9, 2051 (1999)

    Article  Google Scholar 

  35. M A Osipov and A Fukuda,Phys. Rev. E62, 3724 (2000)

    ADS  Google Scholar 

  36. E Gorecka, D Pociecha, F Araoka, D R Link, M Nakata, J Thisayukta, Y Takanishi, K Ishikawa, J Watanabe and H Takezoe,Phys. Rev. E62, R4524 (2000)

    ADS  Google Scholar 

  37. M Nakata, D R Link, F Araoka, J Thisayukta, Y Takanishi, K Ishikawa, J Watanabe and H Takezoe,Liq. Cryst. 28, 1301 (2001)

    Article  Google Scholar 

  38. M Nakata, D R Link, J Thisayukta, Y Takanishi, K Ishikawa, J Watanabe and H Takezoe,J. Mater. Chem. 11, 2694 (2001)

    Article  Google Scholar 

  39. V Prasad, D S S Rao and S K Prasad,Liq. Cryst. 27, 585 (2000)

    Article  Google Scholar 

  40. G Dantlgraber, A Eremin, S Diele, A Hauser, H Kresse, G Pelzl and C Tschierske,Angew. Chem. Int. Ed. 41, 2408 (2002)

    Article  Google Scholar 

  41. G Dantlgraber, PhD Thesis (University Halle, 2003)

  42. Also a disiloxane substituted derivative, first described as AF [38] has turned out to have FE switching behaviour

  43. Y Takanishi and H Takezoe, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo, personal communication

  44. G Heppke, A Jakli, S Rauch and H Sawade,Phys. Rev. E60, 5575 (1999)

    ADS  Google Scholar 

  45. N Clark, Department of Physics, University of Colorado, Boulder, personal communication

  46. A Hauser, G Dantlgraber and C Tschierske, unpublished results

  47. P A Pramod, R Pratibha, S R Warrier and N V Madhusudana,Ferroelectrics 244, 31 (2000)

    Article  Google Scholar 

  48. C V Yelamaggad, U S Hiremath, D S S Rao and S K Prasad,Chem. Commun. 2000, 57

  49. B Zenks and M Cipec,SPIE Proceedings 3318, 68 (1998)

    Article  ADS  Google Scholar 

  50. H Allouchi, M Cotrait, M Laguerre, J C Rouillon, J P Marcerou and H T Nguyen,Liq. Cryst. 25, 207 (1998)

    Article  Google Scholar 

  51. B Jin, Z Ling, Y Takanishi, K Ishikawa, H Takezoe, A Fukuda, M Kakimoto and T Kitazume,Phys. Rev. E53, R4295 (1996)

    ADS  Google Scholar 

  52. T Nakai, S Miyajima, Y Takanishi, S Yoshida and A Fukuda,J. Chem. Phys. 103, 406 (1999)

    Google Scholar 

  53. J P Bedel, J C Rouillon, J P Marcerou, M Laguerre, H T Nguyen and M F Achard,J. Mater. Chem. 12, 2214 (2002)

    Article  Google Scholar 

  54. S Rauch, P Bault, H Sawade, G Heppke, G G Nair and A Jakli,Phys. Rev. E66, 021706 (2002)

    ADS  Google Scholar 

  55. P G de Gennes,The physics of liquid crystals (Clarendon Press, Oxford, 1974)

    Google Scholar 

  56. H R Brand, P E Cladis and H Pleiner,Eur. Phys. J. 6, 347 (1998)

    ADS  Google Scholar 

  57. A Jakli, D Krüerke, H Sawade and G Heppke,Phys. Rev. Lett. 86, 5715 (2001)

    Article  ADS  Google Scholar 

  58. N Chattham, E Körblova, R Shao, D M Walba, J E Maclennan and N A Clark, inAbstracts of the 8th International Conference on Ferroelectric Liquid Crystals, Washington, 2001

  59. D M Walba, E Körblova, R Shao, D N Coleman, N Chattham, J E Maclennan and N A Clark,19th International Liquid Crystal Conference, Edinburgh, 2002, C15

  60. M Y M Huang, A M Pedreira, O G Martins, A M Figueirdo Neto and A Jakli,Phys. Rev. E66, 031708 (2002)

    ADS  Google Scholar 

  61. C T Imrie, Structure and Bonding, inLiquid crystals II edited by D M P Mingos (Springer, Berlin, 1999) vol. 95, p. 149

    Chapter  Google Scholar 

  62. S W Choi, M Zennyoji, Y Takanishi, H Takezoe, T Niori and J Watanabe,Mol. Cryst. Liq. Cryst. 328, 185 (1999)

    Article  Google Scholar 

  63. J Watanabe, T Niori, S W Choi, Y Takanishi and H Takezoe,Jpn. J. Appl. Phys. 37, L-401 (1998)

    Google Scholar 

  64. W K Robinson, P S Kloess, C Carboni and H J Coles,Mol. Cryst. Liq. Cryst. 23, 309 (1997)

    Google Scholar 

  65. W K Robinson, C Carboni, P Kloess, S P Perkins and H J Coles,Liq. Cryst. 25, 301 (1998)

    Article  Google Scholar 

  66. W K Robinson, P Lehmann and H J Coles,Mol. Cryst. Liq. Cryst. 328, 229 (1999)

    Article  Google Scholar 

  67. P Lehmann, W K Robinson and H J Coles,Mol. Cryst. Liq. Cryst. 328, 221 (1999)

    Article  Google Scholar 

  68. C Carboni and H J Coles,Mol. Cryst. Liq. Cryst. 328, 349 (1999)

    Article  Google Scholar 

  69. D Guillon, M A Osipov, S Mery, M Siffert, J-F Nicoud, C Bourgogne and P Sebastiao,J. Mater. Chem. 11, 2700 (2001)

    Article  Google Scholar 

  70. G Dantlgraber, S Diele and C Tschierske,Chem. Commun. 2002, 2768

  71. G Heppke, D D Parghi and H Sawade,Liq. Cryst. 27, 313 (2000)

    Article  Google Scholar 

  72. H N Shreenivasa Murthy and B K Sadashiva,Liq. Cryst. 29, 1223 (2002)

    Article  Google Scholar 

  73. Another explanation of the macroscopic chiral domains could be based on a coupling of conformational molecular chirality and geometric layer chirality as discussed in §2. However, this cannot explain the unusual optical properties of these mesophases, unless an anticlinic (SmAPA) structure with tilt angles of about 45° [orthoconic phases, see S Lagerwall, A Dahlgren, P Jägemalm, P Rudquist, K D’havé, H Pauwels, R Dabrowski and W Drzewinski,Adv. Funct. Mater. 11, 87 (2001)] or an additional helical superstructure has been assumed

    Article  Google Scholar 

  74. A Eremin, S Diele, G Pelzl and W Weissflog,Phys. Rev. E67, 020702 (2003)

    ADS  Google Scholar 

  75. G Dantlgraber, U Baumeister, S Diele, H Kresse, B Lühmann, H Lang and C Tschierske,J. Am. Chem. Soc. 124, 14852 (2002)

    Article  Google Scholar 

  76. Y P Panarin, V Panov, O E Kalinovskaya and J K Vij,J. Mater. Chem. 9, 2967 (1999)

    Article  Google Scholar 

  77. J P F Lagerwall, F Giesselmann and M D Radcliffe,Phys. Rev. E66, 031703 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschierske, C., Dantlgraber, G. From antiferroelectricity to ferroelectricity in smectic mesophases formed by bent-core molecules. Pramana - J Phys 61, 455–481 (2003). https://doi.org/10.1007/BF02708325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708325

Keywords

PACS Nos

Navigation