Journal of Chemical Sciences

, Volume 115, Issue 5–6, pp 775–788 | Cite as

Relaxor type perovskites: Primary candidates of nano-polar regions

  • S. B. Krupanidhi
Article

Abstract

Relaxor properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) and non-lead perovskite thin films have been analysed in terms of large frequency dispersion of dielectric response at low temperatures. A wide spectrum of dielectric relaxation was observed in the frequency-dependent response of the imaginary part of the dielectric permittivity. Transformation from normal ferroelectric to relaxor behaviour has been observed in the case of the Ca substituting the BaTiO3 thin films. A number of techniques were exploited to investigate the wide spectrum of relaxation times in pulsed laser ablated thin films.ac anddc electric field induced complex dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were studied as function of frequencies at different temperatures. Nonlinear behaviour of dielectric susceptibility with respect to the amplitude of theac drive was observed at lower temperatures. The frequency dependence of transition temperatureTm (temperature of the maximum of dielectric constant) was studied using the Vogel-Fulcher relation.

Keywords

Relaxor PMN-PT BCT PLD Vogel-Fulcher 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cross L E 1987Ferroelectrics 76 241Google Scholar
  2. 2.
    Smolenskii G A 1965 Sov.Phys. Solid State 6 1676Google Scholar
  3. 3.
    Viehland D, Jang S, Cross L E and Wittig M 1990J. Appl. Phys. 68 2916CrossRefGoogle Scholar
  4. 4.
    Bokov V A and Myl’nikova I E 1961Sov. Phys. Solid State 3 613Google Scholar
  5. 5.
    Westphal V, Kleeman W and Glinchuk M D 1992Phys. Rev. Lett. 68 847CrossRefGoogle Scholar
  6. 6.
    Viehland D, Li J F, Jang S J, Cross L E and Wittig M 1992Phys. Rev. B46 8013Google Scholar
  7. 7.
    Qian H and Bursill L A 1996Int. J. Mod. Phys. B10 2007Google Scholar
  8. 8.
    Chen I-W, Li P and Wang Y 1996J. Phys. Chem. Solids 57 1525CrossRefGoogle Scholar
  9. 9.
    Glazounov A E and Tagantsev A K 1998Appl. Phys. Lett. 75 856CrossRefGoogle Scholar
  10. 10.
    Vugmeister and Rabitz 2000Phys. Rev. B61 14448Google Scholar
  11. 11.
    Shimizu M and Shiosaki T 1996Mater. Res. Soc. Symp. Proc. 401 129Google Scholar
  12. 12.
    Laha A, Saha S and Krupanidhi S B 2003Thin Solid Films 424 274CrossRefGoogle Scholar
  13. 13.
    Jiang M C, Wu T B and Wu J M 1995Jpn. J. Appl. Phys. 34 3153CrossRefGoogle Scholar
  14. 14.
    Kighelman Zet al 1998Appl. Phys. Lett. 73 2281CrossRefGoogle Scholar
  15. 15.
    Viehland D, Jang S, Cross L E and Wuttig M 1991Philos. Mag. B64 335Google Scholar
  16. 16.
    Bitoh T, Obba K, Takamatsu M, Shirane T and Chikazawa S 1996J. Magn. Magn. Mater. 154 59CrossRefGoogle Scholar
  17. 17.
    Duffrene L, Gy R, Brlet H and Piques R 1997J. Non-Cryst. Solids 215 208CrossRefGoogle Scholar
  18. 18.
    Labarta A, Batlle X, Martinez B and Obradors X 1992Phys. Rev. B46 8994Google Scholar
  19. 19.
    Toystolytkin A I, Belous N A and Lezhnenko IV 1994J. Magn. Magn. Mater. 130 293CrossRefGoogle Scholar
  20. 20.
    Goya G F, Rechenberg H R and Sagredo V 2001J. Magn. Magn. Mater. 226 1298CrossRefGoogle Scholar
  21. 21.
    Akbas M A and Davies P K 1997J. Am. Ceram. Soc. 80 2933CrossRefGoogle Scholar
  22. 22.
    Davies P K, Tong J and Negas T 1997J. Am. Ceram. Soc. 80 1727CrossRefGoogle Scholar
  23. 23.
    Glazounov A E, Tagantsev A K and Bell A J 1996Phys. Rev. B53 11281Google Scholar
  24. 24.
    Zhang Y, Gui H, Li L and Gui Z 1997Jpn. J. Appl. Phys. 36 L1325CrossRefGoogle Scholar
  25. 25.
    Burns G and Dacol F H 1983Phys. Rev. B28 2527Google Scholar
  26. 26.
    Kingon A I, Streiffer, Basceri C and Summerfelt S R 1996Mater. Res. Soc. Bull. 21(7) 46Google Scholar
  27. 27.
    Auciello O, Scott J F and Ramesh R 1998Phys. Today 51 22Google Scholar
  28. 28.
    Jaffe B, Cook W R and Jaffe H 1971Piezoelectric ceramics (R.A.N. Publishers)Google Scholar
  29. 29.
    Yu Z, Ang C, Guo R and Bhalla A 2002J. Appl. Phys. 92 2655CrossRefGoogle Scholar
  30. 30.
    Victor P, Ranjith R, Sarkar A, Vinayak R, Saha S and Krupanidhi S B 2002Proc. Mater. Res. Soc. U 12.5Google Scholar
  31. 31.
    Veenhuiset al 2000Appl. Phys. B70 797Google Scholar
  32. 32.
    Shaw T M, Trolier McKinstry S and McIntyre P C 2000Annu. Rev. Mater. Sci. 30 263CrossRefGoogle Scholar
  33. 33.
    Zhang, Han Y H, Lal M and Smyth D M 1987J. Am. Ceram. Soc. 70 100CrossRefGoogle Scholar
  34. 34.
    Han Y H, Appleby J B and Smyth D M 1987J. Am. Ceram. Soc. 70 96CrossRefGoogle Scholar
  35. 35.
    Park J G, Oh T S and Kim Y H 1992J. Mater. Sci. 27 5713CrossRefGoogle Scholar
  36. 36.
    Kirilov V V and Isupov V A 1973Ferroelectrics 5 3Google Scholar
  37. 37.
    Smolenskii G A and Agranovskya A I 1958Sov. Phys. Tech. Phys. 3 1380Google Scholar
  38. 38.
    Krishna P S R, Dhananjai Pandey, Tiwari V S, Chakravarthy R and Dasannacharya B A 1993Appl. Phys. Lett. 62 231CrossRefGoogle Scholar
  39. 39.
    Chang M C and Chan Yu S C 2000J. Mater. Sci. Lett. 19 1323CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  • S. B. Krupanidhi
    • 1
  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations