Skip to main content
Log in

Numerical analysis for the dynamics of the oxidation-induced stacking fault in czochralski-grown silicon crystals

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The continuum model of point defect dynamics to predict the concentration of interstitial and vacancy is established by estimating expressions for the thermophysical properties of point defects and the point defect distribution in a silicon crystal and the position of oxidation-induced stacking fault ring (R-OiSF) created during the cooling of crystals in Czochralski silicon growth process are calculated by using the finite element analysis. Temperature distributions in the silicon crystal in an industrial Czochralski growth configuration are measured and compared with finite volume simulation results. These temperature fields obtained from finite volume analysis are used as input data for the calculation of point defect distribution and R-OiSF position. Calculations of continuum point defect distributions predict the transition between vacancy and interstitial dominated precipitations of microdefects as a function of crystal pull rate (V). The dependence of the radius of R-OiSF (ROiSF) on the crystal length with fixed growth rate for a given hot zone configuration is examined. The ROiSF is increased with the increase of crystal length. These predictions from point defect dynamics are well agreed with experiments and empirical V/G correlation qualitatively, where G. is the axial temperature gradient at the melt/crystal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammon, W., Dombeiger, E., Oelkrug, H. and Weidner, H., “The Dependence of Bulk Defects on the Axial Temperature Gradient of Silicon Crystals during Czochralski Growth”,J. Cryst. Growth,151, 273 (1995).

    Article  Google Scholar 

  • Brown, R. A., Maroudas, D. and Sinno, T., “Modelling Point Defect Dynamics in the Crystal Growth”,J. Cryst. Growth,137, 12 (1994).

    Article  CAS  Google Scholar 

  • Dornberger, E. and Ammon, W., “The Dependence of Ring-Like Distributed Stacking Faults on the Axial Temperature Gradient of Growing Czochralski Silicon Crystals”,J. Electrochem. Soc.,143, 1648 (1996).

    Article  CAS  Google Scholar 

  • Dornberger, E., GrÄf, D., Suhren, M., Lambert, U., Wagner, P., Dupret, F. and Ammon, W., “Influence of Boron Concentration on the Oxidation-induced Stacking Fault Ring in Czochralski Silicon Crystals”,J. Cryst. Growth,180, 343 (1997).

    Article  CAS  Google Scholar 

  • Dornberger, E., Tomzig, E., Seidl, A., Schmitt, S., Leister, H.-J., Schmitt, Ch. and Müller, G., “Thermal Simulation of the Czochralski Silicon Growth Process by Three Different Models and Comparison with Experimental Results”,J. Cryst. Growth,180, 461 (1997).

    Article  CAS  Google Scholar 

  • Habu, R., Yunoki, I., Saito, T. and Tomiura, A., “Diffusion of Point Defects in Silicon Crystals during Melt-growth. I. Uphill Diffusion”,Jpn. J. Appl. Phys.,32, 1740 (1993).

    Article  CAS  Google Scholar 

  • Habu, R., Kojima, K., Harada, H. and Tomiura, A., “Diffusion of Point Defects in Silicon Crystals during Melt-growth. II. One Diffusion Model”,Jpn. J. Appl. Phys.,32, 1747 (1993).

    Article  CAS  Google Scholar 

  • Habu, R., Kojima, K., Harada, H. and Tomiura, A., “Diffusion of Point Defects in Silicon Crystals during Melt-growth. III. Two Diffusion Model”,Jpn. J. Appl. Phys.,32, 1754 (1993).

    Article  CAS  Google Scholar 

  • Habu, R., Iwasaki, T., Harada, H. and Tomiura, A., “Diffusion Behavior of Point Defects in Si Crystal during Melt-Growth. IV. Numerical Analysis”,Jpn. J. Appl. Phys.,33, 1234 (1994).

    Article  CAS  Google Scholar 

  • Habu, R. and Tomiura, A., “Distribution of Grown-in Crystal Defects in Silicon Crystals Formed by Point Defect Diffusion during Melt-Growth: Disappearance of the Oxidation Induced Stacking Faults-Ring”,Jpn. J. Appl. Phys.,35, 1 (1996).

    Article  CAS  Google Scholar 

  • Hasebe, M., Takeoka, Y., Shinoyama, S. and Naito, S., “Formation Process of Stacking Faults with Ringlike Distribution in CZ-Si Wafers”,Jpn. J. Appl. Phys.,28, L1999 (1989).

    Article  CAS  Google Scholar 

  • Hood, P., “Frontal Solution Program for Unsymmetric Matrices”,Int. J. Num. Meth. Eng.,10, 379 (1976).

    Article  Google Scholar 

  • Hu, S. M., “Interstitial and Vacancy Concentrations in the Presence of Interstitial Injection”,J. Appl. Phys.,57, 1069 (1985).

    Article  CAS  Google Scholar 

  • Na, S. Y. and Kim, D. H., “Three-dimensional Modelling of Non-newtonian Fluid Flow in a Coat-hanger Die”,Korean J. Chem. Eng.,12, 236 (1995).

    Article  CAS  Google Scholar 

  • Oh, H. J., Wang, J. H. and Yoo, H.-D., “Comparison of Numerical Simulation and Experiment for the OiSF-ring Diameter in Czochralski-growth Silicon Crystal”, (2000) Preparation.

  • Park, B. M., Seo, G. H. and Kim, G., “Effects of Pulling Rate Fluctuation on the Interstitial-vacancy Boundary Formation in CZ-Si Single Crystal”,J. Cryst. Growth,203, 67 (1999).

    Article  CAS  Google Scholar 

  • Puzanov, N. I. and Eidenzon, A. M., “The Effect of Thermal History during Crystal Growth on Oxygen Precipitation in Czochralskigrown Silicon”,Semicond. Sci. Technol.,7, 406 (1992).

    Article  CAS  Google Scholar 

  • Sinno, T., Brown, R. A., Ammon, W. and Dornberger, E., “On the Dynamics of the Oxidation-induced Stacking Fault Ring in as-grown Czochralski Silicon Crystals”,Appl. Phys. Lett.,70, 2250 (1997).

    Article  CAS  Google Scholar 

  • Sinno, T., Brown, R. A., Ammon, W. and Dornberger, E., “Point Defect Dynamics and the Oxidation-induced Stacking-fault Ring in Czochralski-grown Silicon Crystals”,J. Electrochem. Soc.,145, 302 (1998).

    Article  CAS  Google Scholar 

  • Voronkov, V. V., “The Mechanism of Swirl Defects Formation in Silicon”,J. Cryst. Growth,59, 625 (1982).

    Article  CAS  Google Scholar 

  • Voronkov, V. V. and Falster, R., “Vacancy-type Microdefect Formation in Czochralski Silicon”,J. Cryst. Growth,194, 76 (1998).

    Article  CAS  Google Scholar 

  • Wang, J. H., Kim, D. H. and Chung, D.-S., “Analysis of Moving Boundary Problem of Growth of Bismuth Germanate Crystal by Heat Exchanger Method”,Korean J. Chem. Eng.,13, 503 (1996).

    Article  CAS  Google Scholar 

  • Wijaranakula, W., “Real-time Simulation of Point Defect Reactions Near the Solid and Melt Interface of a 200 mm Diameter Czochralski Silicon Crystal”,J. Electrochem. Soc.,140, 3306 (1993).

    Article  CAS  Google Scholar 

  • Zimmermann, H. and Ryssel, H., “Gold and Platinum Diffusion: The Key to the Understanding of Intrinsic Point Defect Behavior in Silicon”,Appl. Phys. A.,55, 121 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hoe Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.H., Oh, H.J. & Yoo, HD. Numerical analysis for the dynamics of the oxidation-induced stacking fault in czochralski-grown silicon crystals. Korean J. Chem. Eng. 18, 81–87 (2001). https://doi.org/10.1007/BF02707202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02707202

Key words

Navigation