Skip to main content
Log in

Bioproduct adsorption in immobilized adsorbent: Local thermodynamic equilibrium model

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model using local thermodynamic equilibrium isotherms for adsorption on immobilized adsorbents is proposed in order to optimize the design parameters inin situ bioproduct separation process. The model accurately follows the experimental data on the adsorption of berberine, secondary metabolite produced in plant cell culture. The result shows that the lower loading capacity in immobilized adsorbents is due to the decrease in the maximum solid phase concentration and the isotherm equilibrium constant, not the effective diffusivity. Design parameters inin situ bioproduct separation process, such as the size of the beads, the ratio of beads to bulk volume and the adsorbent content of the bead, are evaluated by using the model. The decrease of bead size is the most effective parameter for adsorption of berberine in immobilized adsorbent due to a reduction in the overall diffusional resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skinner, N.E., Walton, N.J., Robins, R.J. and Rhodes, M.J.C.:Phytochem.,26, 721 (1987).

    Article  CAS  Google Scholar 

  2. Payne, G.F. and Payne, N.N.:Biotechnol. Lett.,10, 187 (1988).

    Article  CAS  Google Scholar 

  3. Payne, G.F. and Shuler, M.L:Biotechnol., Bioeng., 31, 922(1988).

    Article  CAS  Google Scholar 

  4. Choi, J.W.: Ph.D. Dissertation, Rutgers Univ., New Brunswick, U.S.A. (1990).

  5. Nigam, S.C. and Wang, H.Y.: “Separation, Recovery and Purification in Biotechnology” (ed. by Asenjo, J.A. and Hong, J.), p. 153, American Chemical Society, Washington D.C. (1986).

    Google Scholar 

  6. Nigam, S.C.: Ph.D. Dissertation, Univ. of Michigan, Ann Arbor, U.S.A. (1988).

  7. Pedersen, H., Furier, L, Venkatasubramanian, K., Prenosil, J. and Stuker, E.:Biotechnol. Bioeng.,27, 967 (1985).

    Article  Google Scholar 

  8. Firdaus, V.: Ph.D. Dissertation, Rutgers Univ., New Brunswick, U.S.A. (1984).

  9. Villadsen, J.V. and Michelsen, M.: “Solution uf Differential Equation Models by Polynomial Approximation”, Prentice-Hall, Englewood Cliffs (1978).

    Google Scholar 

  10. Maron, M.J.: “Numerical Analysis: A Practical Approach”, Macmillan Publishing Co., New York (1982).

    Google Scholar 

  11. Tanaka, H., Matsumura, M. and Veliky, I.A.:Biotechnol. Bioeng.,26, 53 (1984).

    Article  CAS  Google Scholar 

  12. Metzler, C.M., Elfring, G.L. and McEwen, A.J.:Biometrics,30, 562 (1974).

    Article  Google Scholar 

  13. Seinfeld, J. and Lapidus, L.: “Process Modeling, Estimation and Identification”, Prentice-Hall, Englewood Cliffs (1970).

    Google Scholar 

  14. Paleos, J.:J. of Colloid and Interface Sci.,31, 7 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JW. Bioproduct adsorption in immobilized adsorbent: Local thermodynamic equilibrium model. Korean J. Chem. Eng. 7, 269–278 (1990). https://doi.org/10.1007/BF02707179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02707179

Keywords

Navigation