Skip to main content
Log in

Deactivation of the metal and acidic functions for Pt, Pt-Sn and Pt-Sn-K using physically mixed catalysts

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of K addition on the amount and dispersion of carbon deposition on metal sites and support sites was investigated on a physical mixture for hexane dehydrogenation. TPO, BET and ESR experiments were used for characterization. The K addition significantly decreases catalyst deactivation involving the amount of coke deposits and the density of carbon radicals on the metal and support sites because of ensemble and electronic effects, especially on the metal sites. Coke on the metal sites associated with carbonaceous species rich in hydrogen is less polymerized than coke on the support sites, corresponding to a more graphitic-like carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afonso, J. C., Schmal, M. and Frety, R., “The Chemistry of Coke Deposits Formed on a Pt-Sn Catalyst during Dehydrogenation of n-Alkanes to Mono-olefins,”Fuel Pro. Tech.,41, 13 (1994).

    Article  CAS  Google Scholar 

  • Barbier, J., “Coking of Reforming Catalysts,”Catalyst Deactivation, 1 (1987).

  • Beltramini, J. and Trimm, D. L., “Activity, Selectivity and Coking over Mono-and Bi-metallic Reforming Catalysts,”Appl. Catal.,32, 71 (1987).

    Article  CAS  Google Scholar 

  • Biswas, J., Bickle, G. M., Gray, P.G., Do, D.D. and Barbier, J., “The Role of Deposited Poisons and Crystallite Surface Structure in the Activity and Selectivity of Reforming Catalysts,”Catal. Rev.-Sci. Eng.,30(2), 161 (1988).

    Article  CAS  Google Scholar 

  • Biswas, J., Gray, P.G. and Do, D. D., “The Reformer Lineout Phenomenon and its Fundamental Importance to Catalyst Deactivation,”Appl. Catal.,32, 249 (1987).

    Article  CAS  Google Scholar 

  • Bond, G. C., “Heterogeneous Catalysis: Principles and Application,” Clarendon Press, Oxford (1987).

    Google Scholar 

  • Butt, J. B. and Peterson, E. E., “Activation Deactivation and Poisoning of Catalysts,” Academic Press Inc. (1988).

  • Cortright, R. D. and Dumesic, J. A., “Effects of Potassium on Silicasupported Pt and Pt/Sn Catalysts for Isobutane Dehydrogenation,”J. Catal.,157, 576 (1995).

    Article  CAS  Google Scholar 

  • Guisnet, M. and Magnoux, P., “Coking and Deactivation of Zeolites: Influence of the Pore Structure,”Appl. Catal.,54, 1 (1989).

    Article  CAS  Google Scholar 

  • Gutsze, A., Roland, U. and Karge, H. G., “Evidence for a Charge Transfer from Spilt-over Hydrogen to Platinum by Means of ESR Spectroscopy,”Spillover and Migration of Surface Species on Catalysts, 417 (1997).

  • Hill, J.M., Cortright, R.D. and Dumesic, J. A., “Silica- and L-zeolitesupported Pt, Pt/Sn and Pt/Sn/K Catalysts for Isobutane Dehydrogenation,”Appl. Catal.,168, 9 (1998).

    Article  CAS  Google Scholar 

  • Inaba, M., Kintaichi, Y., Hamada, H., “Cooperative Effect of Platinum and Alumina for the Selective Reduction of Nitrogen Monoxide with Propane,”Catal. Lett.,36, 223 (1996).

    Article  CAS  Google Scholar 

  • Jovanovic, M. R. and Putanov, P. S., “Nature and Distribution of Coke Formed on Mono-metallic Platinum and Bimetallic Platinum-rhenium Catalysts,”Appl. Catal.,159, 1 (1997).

    Article  CAS  Google Scholar 

  • Kirszensztejn, P., Foltynowicz, Z. and Wachowski, L., “Peculiar Pore Structure of the Coke Coating Formed on Pt-Sn/γ-Al2O3 Catalysts,”Ind. Eng. Chem. Res.,30, 2276 (1991).

    Article  CAS  Google Scholar 

  • Lange, J. P. and Gutsze, A., “Coke Formation through the Reaction of Ethene over Hydrogen Mordenite: III. IR and 13C-NMR Studies,”Appl. Catal.,45, 345 (1988).

    Article  CAS  Google Scholar 

  • Lange, J. P., Gutsze, A. and Karge, H. G., “Coke Formation through the Reaction of Olefins over Hydrogen Mordenite: I. EPR Measurements under Static Conditions,”J. Catal.,114, 136 (1988).

    Article  CAS  Google Scholar 

  • Lange, J. P., Gutsze, A. and Karge, H. G., “Coke Formation through the Reaction of Olefins over Hydrogen Mordenite: II. Insitu EPR Measurements under on-Stream Conditions,”J. Catal.,114, 144 (1988).

    Article  Google Scholar 

  • Larsson, M., Hulten, M., Blekkan, E. A. and Andersson, B., “The Effect of Reaction Conditions and Time on Stream on the Coke Formed during Propane Dehydrogenation,”J. Catal.,164, 44 (1996).

    Article  CAS  Google Scholar 

  • Lietz, G. and Volter, J., “Initial Changes of the Catalytic Properties of Platinum Containing Catalysts: I. Transformations of Mono- and Bimetallic Pt/Al2O3 Catalysts by Carbonaceous Deposits,”Appl. Catal.,13, 77 (1984).

    Article  CAS  Google Scholar 

  • Liwu, L., Tao, Z., Jingling, Z. and Zhusheng, X., “Dynamic Process of Carbon Deposition on Pt and Pt-Sn Catalysts for Alkane Dehydrogenation,”Appl. Catal.,67, 11 (1990).

    Article  Google Scholar 

  • Lunsford, J. H., “Electron Spin Resonance in Catalysis,”Advances in Catalysis,22, 265 (1972).

    Article  CAS  Google Scholar 

  • Macleod, N., Fryer, J. R., Stirling, D. and Webb, G., “Catal. Deactivation of Bi- and Multimetall Reforming Catalysts: Influence of Alloy Formation on Catalyst Activity,”Catal. Today,46, 37 (1998).

    Article  CAS  Google Scholar 

  • Mann, R., “Catalyst Deactivation by Coke Deposition: Approaches Based on Interactions of Coke Laydown with Pore Structure,”Catal. Today,37, 331 (1997).

    Article  CAS  Google Scholar 

  • Padro, C. L., de Miguel, S. R., Castro, A.A. and Scelza, O.A., “Stability and Regeneration of Supported PtSn Catalysts for Propane Dehydrogenation,”Catalyst Deactivation, 191 (1997).

  • Rostrup-Nielsen, J. R., “Industrial Relevance of Coking,”Catal. Today,37, 225 (1997).

    Article  CAS  Google Scholar 

  • Shum, V.K., Butt, J. B. and Sachtler, W. M. H., “The Dehydrocyclization-Controlling Site in Bifunctional Reforming Catalysts,”Appl. Catal.,11, 151 (1984).

    Article  CAS  Google Scholar 

  • Tao, Z., Jingling, Z. and Liwu, L., “Relation between Surface Structure and Carbon Deposition on Pt/Al2O3 and Pt-Sn/Al2O3 Catalysts,”Catalyst Deactivation, 143 (1991).

  • Trimm, D. L., “Catalyst Design for Reduced Coking,”Appl. Catal.,5, 263 (1983).

    Article  CAS  Google Scholar 

  • Trimm, D. L., “Catalysts for the Control of Coking during Steam Reforming,”Catal. Today,49, 3 (1999).

    Article  CAS  Google Scholar 

  • Werlz, J. E. and Bolton, J. R., “Electron Spin Resonance: Elementary Theory and Practical Applications,” Chapman and Hall Ltd., New York (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunee Srihiranpullop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srihiranpullop, S., Praserthdam, P. & Mongkhonsi, T. Deactivation of the metal and acidic functions for Pt, Pt-Sn and Pt-Sn-K using physically mixed catalysts. Korean J. Chem. Eng. 17, 548–552 (2000). https://doi.org/10.1007/BF02707164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02707164

Key words

Navigation