Skip to main content
Log in

The effect of interparticle forces on fluidization regimes in the magnetized fluidized beds

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper investigated the influence of interparticle forces on the quality of fluidization in a magnetically stabilized fluidized bed (MSFB), where we can “artificially” create interparticle forces (Fattr) of any magnitude by applying an external magnetic field to ferromagnetic particles. A theoretical model was proposed which predicts the transition point from a homogeneous to a heterogeneous fluidization as a function of the magnitude of the interparticle force and other physical characteristics of both particles and fluids that are usually observed in fluidizationρ p, ρf,μ, dp, ε). The concept of the elastic wave velocity, Ue, and the continuity wave velocity, Uε, was introduced. In particular, the interparticle force manipulated by an externally applied magnetic field was taken into account in addition to a general consideration of a conventional fluidized bed. Bubbles form in a bed when the continuity wave velocity becomes faster than the elastic wave velocity. The simulation demonstrated the proposed model could predict the transition point of fluidization regime with reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baerns, M., “Effect of Interparticle Adhesive Forces on Fluidization of Fine Particles,”I & EC Fund.,5(4), 508 (1966).

    Article  CAS  Google Scholar 

  • Barrett, C. R. and Tetelman, A. S., “The Principles of Engineering Materials,” Prentice-Hall, N. J. (1973).

    Google Scholar 

  • Casal, J., “Contribuci’o a l’estudi de la fluiditzaci’o homogenia,” Arxius Secci’o Ciències, Institut d’Estudis catalans, Barcelona, 77 (1984).

    Google Scholar 

  • Chen, C. W., “Magnetism and Metallurgy of Soft Magnetic Materials,” North-Holland (1977).

  • Chetty, A. S., Gabis, D. H. and Burns, M. A., “Overcoming Support Limitations in Magnetically Fluidized Bed Separators,”Powder Tech.,64, 165 (1991).

    Article  CAS  Google Scholar 

  • Ciborowski, J. and Wlodarski, A., “On Electrostatic Effects in Fluidized Beds,”Chem. Eng. Sci.,17, 23 (1962).

    Article  CAS  Google Scholar 

  • Cohen, A. H. and Chi, T., “Aerosol Filtration in a Magnetically Stabilized Fluidized Bed,”Powder Tech.,64, 147 (1991).

    Article  CAS  Google Scholar 

  • Cox, J. D. and Clark, N. N., “The Effect of Particle Drag Relationships on Prediction of Kinematic Wave Velocity in Fluidized Beds,”Powder Tech.,66, 177 (1991).

    Article  CAS  Google Scholar 

  • Donsi’, G. and Massimilla, L., “Bubble-Free Expansion of GasFluidized Beds of Fine Particles,”AIChE Symp. Ser.,19(6), 1104 (1973).

    CAS  Google Scholar 

  • Donsi’, G., Moser, S. and Massimilla, L., “Solid-Solid Interaction Between Particles of a Fluid Bed Catalyst,”Chem. Eng. Sci.,30, 1533 (1975).

    Article  CAS  Google Scholar 

  • Filippov, M. V., “The Effect of a Magnetic Field on a Ferromagnetic Particle Suspension Bed,”Prik. Magnit. Lat. SSR (USSR),12, 215 (1960).

    Google Scholar 

  • Flemmer, R. L. C. and Clark, N. N., “Wave Velocity Based on a New Equation of State for Fluidized Beds,”Powder Tech.,50, 77 (1987).

    Article  CAS  Google Scholar 

  • Foscolo, P. U. and Gibilaro, L. G., “A Fully Predictive Criterion for the Transition Between Particulate and Aggregate Fluidization,”Chem. Eng. Sci.,39(12), 1667 (1984).

    Article  CAS  Google Scholar 

  • Foscolo, P. U., Gibilaro, L. G., Felice, R. Di. and Waldram, S. P., “The Effect of Interparticle Forces on the Stability of Fluidized Beds,”Chem. Eng. Sci.,40(12), 2379 (1985).

    Article  CAS  Google Scholar 

  • Geldart, D. and Abrahamsen, A. R., “Homogeneous Fluidization of Fine Powders Using Various Gases and Pressures,”Powder Tech.,19, 133 (1978).

    Article  CAS  Google Scholar 

  • Gibilaro, L. G., Felice, R. Di., Waldram, S. P. and Foscolo, P. U., “Generalized Friction Factor and Drag Coefficient Correlations for Fluid-Particle Interactions,”Chem. Eng. Sci.,40(10), 1817 (1985).

    Article  CAS  Google Scholar 

  • Gibilaro, L. G., Felice, R. Di. and Foscolo, P. U., “The Influence of Gravity on the Stability of Fluidized Beds,”Chem. Eng. Sci.,41(9), 2438 (1986).

    Article  CAS  Google Scholar 

  • Griffiths, D. J., “Introduction to Electrodynamics,” Prentice-Hall, N. J. (1981).

    Google Scholar 

  • Jaraiz, E.-M., Kimura, S. and Levenspiel, O., “Vibrating Beds of Fine Particles: Estimation of Interparticle Forces from Expansion and Pressure Drop Experiments,”Powder Tech.,72, 23 (1992).

    Article  CAS  Google Scholar 

  • Katz, H. and Sears, J. T., “Electric Field Phenomena in Fluidized and Fixed Beds,”Canadian J. Chem. Eng.,47, 50 (1969).

    Article  Google Scholar 

  • Kirko, I. M. and Filippv, M. V., “Standard Correlations for a Fluidized Bed of Ferromagnetic Particles in a Magnetic Field, Report F-21, Section on Physical Modeling,” Interinstitutional Scientific Conference on Applied Physics and Mathematical Modeling, Moscow (1959);Zh. Tek. Fiz.,30, 1081 (1960).

    Google Scholar 

  • Massey, B. S., “Mechanics of Fluids,” 4th Ed., Van Nostrand Reinhold, London (1979).

    Google Scholar 

  • Massimilla, L. and Donsi’, G., “Cohesive Forces between Particles of Fluid-Bed Catalysts,”Powder Tech.,15, 253 (1976).

    Article  Google Scholar 

  • Molerus, O., “Interpretation of Geldart’s Type A, B, C and D Pow ders by Taking into Account Interparticle Cohesion Forces,”Powder Tech.,33, 81 (1982).

    Article  CAS  Google Scholar 

  • Overbeek, J. Th, G., “Interparticle Forces in Colloid Science,”Powder Tech.,37, 195 (1984).

    Article  CAS  Google Scholar 

  • Richardson, J. F. and Zaki, W. N., “Sedimentation and Fluidization,”Trans. Inst. of Chem. Engrs,32, 35 (1954).

    CAS  Google Scholar 

  • Rietema, K., “The Effect of Interparticle Forces on the Expansion of a Homogeneous Gas-Fluidized Bed,”Chem. Eng. Sci.,28, 1493 (1973).

    Article  CAS  Google Scholar 

  • Rietema, K. and Piepers, H. W., “The Effect of Interparticle Forces on the Stability of Gas-Fluidized Beds-I. Experimental Evidence,”Chem. Eng. Sci.,45(6), 1627 (1990).

    Article  CAS  Google Scholar 

  • Rosensweig, R. E., “Fluidization: Hydrodynamic Stabilization with a Magnetic Field,”Science,206, 57 (April 1979a).

    Article  Google Scholar 

  • Rosensweig, R. E., “Magnetic Stabilization of the State of Uniform Fluidization,”I & EC Fund.,18(3), 260 (1979b).

    Article  CAS  Google Scholar 

  • Rowe, P. N., “A Convenient Empirical Equation for Estimation of the Richardson-Zaki Exponent,”Chem. Eng. Sci.,42, 2795 (1987).

    Article  Google Scholar 

  • Saxena, S. C. and Shrivastava, S., “Some Hydrodynamic Investigations of a Magnetically Stabilized Air-Fluidized Bed of Ferromagnetic Particles,”Powder Tech.,64, 57 (1991).

    Article  CAS  Google Scholar 

  • Saxena, S. C. and Shrivastava, S., “The Influence of an External Magnetic Field on an Air-Fluidized Bed of Ferromagnetic Particles,”Powder Tech.,45(4), 1125 (1990).

    CAS  Google Scholar 

  • Seville, J. P. K. and Clift, R., “The Effect of Thin Layers on Fluidisation Characteristics,”Powder Tech.,37, 117 (1984).

    Article  CAS  Google Scholar 

  • Siegell, J. H., “Liquid-Fluidized Magnetically Stabilized Beds,”Powder Tech.,52, 139 (1987).

    Article  CAS  Google Scholar 

  • Siegell, J. H., “Magnetically Frozen Beds,”Powder Tech.,55, 127 (1988).

    Article  CAS  Google Scholar 

  • Siegell, J. H., “Radial Dispersion and Flow Distribution of Gas in Magnetically Stabilized Beds,”I & EC Proc. Des. Dev.,21, 135 (1982).

    Article  CAS  Google Scholar 

  • Slis, P. L., Willemse, Th. W. and Kramers, H., “The Response of the Level of a Liquid Fluidized Bed to a Sudden Change in the Fluidizing Velocity,”Appl. Sci. Res.,A8, 209 (1959).

    Article  Google Scholar 

  • Stanley, V. M. and Gabriel, G. S., “Electromagnetic Concepts and Application,” Prentice-Hall, N.J. (1982).

    Google Scholar 

  • Verloop, J. and Heertjes, P. M., “Shock Waves as a Criterion for the Transition from Homogeneous to Heterogeneous Fluidization,”Chem. Eng. Sci.,25, 825 (1970).

    Article  CAS  Google Scholar 

  • Wallis, G. B., “One-Dimensional Two-Phase Flow,” McGraw-Hill, New York (1969).

    Google Scholar 

  • Zenz, F. A. and Othmer, D. F., “Fluidization and Fluid-Particle Systems,” Reinhold (1960).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Kul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WK., Jovanovic, G. & Kim, H.T. The effect of interparticle forces on fluidization regimes in the magnetized fluidized beds. Korean J. Chem. Eng. 16, 362–370 (1999). https://doi.org/10.1007/BF02707126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02707126

Key words

Navigation