Skip to main content
Log in

Effects of high temperature and combustion on fluidized material attrition in a fluidized bed

  • Articles
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study investigated the effects of high temperature and combustion conditions on the attrition of fluidized material in a fluidized bed. Silica sand was fluidized in air at an atmospheric pressure between 873 K and 1,073 K. The operating parameters evaluated in investigating the attrition rate of fluidized material included particle size, temperature and both combustion and non-combustion conditions. Experimental results indicated that the total weight of attrition increased with increasing temperature and decreased with increasing particle size. The attrition was higher during the initial fluidization period than the later period, due to the loss of sharp corners and edges of the attrition particles. The initial and final attrition rates during combustion were higher than those in the non-combustion condition, because the heat and thermal shock were produced to increase attrition rate during incineration. Comparing the experimental data with previous correlations, that reveals a significant level of error in the prediction results from existing correlations. This error may occur because the experimental equations neglected the operating temperature and particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arena, V., D’Amore, M., Massimilla, L., “Carbon Attrition during the Fluidized Combustion of a Coal,”AIChE J.,29, 40 (1983).

    Article  CAS  Google Scholar 

  • Chirone, R., D’Amore, M., Massimilla, L. and Mazza, A., “Char Attrition during the Batch Fluidized Bed Combustion of Coal”AIChE J.,31, 812 (1985).

    Article  CAS  Google Scholar 

  • Choi, K. B., Park, S. I., Park, Y. S, Sung, S. W. and Lee, D. H., “Drying Characteristics of Millet in a Continuous Multistage Fluidized Bed,”Korean J. Chem. Eng.,19, 1106 (2002).

    Article  CAS  Google Scholar 

  • Chu, C. Y., Hsueh, K. W. and Hwang, S. J., “Sulfation and Attrition of Calcium Sorbent in a Bubbling Fluidized Bed,”J. of Hazardous Materials,B80, 119 (2000).

    Article  Google Scholar 

  • Cook, L. J., Khang, S. J., Lee, S. K. and Tim, C. K., “Attrition and Changes in Particles Distribution of Lime Sorbents in a Circulation Fluidized Bed Absorber,”Powder Technol,89, 1 (1996).

    Article  CAS  Google Scholar 

  • Geldart, D., “Types of Gas Fluidization,”Powder Technol,7, 285 (1973).

    Article  CAS  Google Scholar 

  • Gu, J. H, Yeo, W. H, Seo, Y C., Lee, S. H. and Lee, J. K., “The Characteristics of Co-incineration of Dewatered Sludge, Waste Oil and Waste Solvent in Commercial-scale Fluidized Bed Incineratof,”Korean J. Chem. Eng.,19, 324 (2002).

    Article  CAS  Google Scholar 

  • Gwyn, J. E., “On the Particle Distribution Function and the Attrition of Cracking Catalysts,”AIChE J.,15, 35 (1969).

    Article  CAS  Google Scholar 

  • Halder, P. K. and Basu, P., “Attrition of Spherical Electrode Carbon Particles during Combustion in a Turbulent Fluidized Bed,”Chem. Eng. Sci.,47, 527 (1992).

    Article  CAS  Google Scholar 

  • Han, K. H., Park, J., Ryu, J. I. and Jin, G. T, “Coal Combustion Characteristics in a Pressurized Fluidized Bed,”Korean J. Chem. Eng.,16, 804 (2001).

    Article  Google Scholar 

  • Jang, J. G., Kim, M. R., Lee, K. H. and Lee, J. K., “Enhancement of Combustion Efficiency with Mixing Ratio during Fluidized Bed Combustion of Anthracite and Bituminous Blended Coal”Korean J. Chem. Eng.,19, 1059 (2002).

    Article  CAS  Google Scholar 

  • Kage, H., Dohzaki, M., Ogura, H. and Matsuno, Y., “Powder Coating Efficiency of Small Particles and Their Agglomeration in Circulating Fluidized Bed,”Korean J. Chem. Eng.,16, 630 (1999).

    Article  CAS  Google Scholar 

  • Ko, M. K., Lee, W. Y., Kim, S. B., Lee, K. W. and Chun, H. S., “Gasification of Food Waste with Steam in Fluidized Bed,”Korean J. Chem. Eng.,18, 961 (2001).

    Article  CAS  Google Scholar 

  • Kono, H., “Attrition Rate of Relatively Coarse Solid Particles in Various Types of Fluidized Beds,”AIChE Symp. Ser.,77, 96 (1981).

    CAS  Google Scholar 

  • Lee, S. K., Jiang, X., Keener, T. C. and Khang, S. J., “Attrition of Lime Sorbents during Fluidization in a Circulating Fluidized Bed Absorber,”Ind. Eng. Chem. Res.,32, 2758 (1993).

    Article  CAS  Google Scholar 

  • Lee, W I, Kim, S. D. and Song, B. H., “Steam Gasification of an Australian Bituminous Coal in a Fluidized Bed,”Korean J. Chem. Eng.,19,1091 (2002).

    Article  CAS  Google Scholar 

  • Lin, L., Sesrs, J. T. and Wen, C. Y., “Elutriation and Attrition of Char a Large Fluidized Bed,”Powder Technol.,27, 105 (1980).

    Article  CAS  Google Scholar 

  • Merrick, D. and Highley, I, “Particle Size Reduction and Elutriation in a Fluidized Bed Process,”AIChE Symp. Ser.,70, 366 (1974).

    Google Scholar 

  • Park, Y S., Kim, H. S., Shun, D., Song, K. S. and Kang, S. K., “Attrition Characteristics of Alumina Catalyst for Fluidized Bed Incineratof,”Korean J. Chem. Eng.,17, 284 (2000).

    Article  CAS  Google Scholar 

  • Patel, K., Nienow, A. W. and Milne, L. P., “Attrition of Urea in a GasFluidized Bed,”Powder Technol.,47, 257 (1986).

    Article  CAS  Google Scholar 

  • Ray, Y. C. and Jiang, T. S., “Particle Attrition Phenomena in a Fluidized Bed,”Powder Technol.,49, 193 (1987).

    Article  CAS  Google Scholar 

  • Shamlou, P. A., Liu, Z. and Yates, J. G., “Hydrodynamic Influences on Particle Breakage in Fluidized Beds,”Chem. Eng. Sci.,45, 809 (1990).

    Article  CAS  Google Scholar 

  • Ulerich, N. H., Vaux, R. A., Newby, R. A. and Keairns, D. L., Experimental/Engineering Support for EPA’s PBC Program, Final Rep., EPA-600/7-80-015A, Westinghouse Research and Development Center, Pittsburgh, PA, USA, Jan. (1980).

  • Vaux, W. G. and Fellers, A. W., “Measurement of Attrition Tendency in Fluidization,”AIChE Symp. Ser,77, 107 (1981).

    CAS  Google Scholar 

  • Vaux, W. G. and Kearins, D. L., in “Fluidization,” Grace, J. R. and Matsen, J. M., Eds., Plenum Press, New York, 437 (1980).

    Google Scholar 

  • Vaux, W. G. and Schruben, J. S., “Kinetics of Attrition in the Bubbling Zone of Fluidized Beds,”AIChEJ.,79, 97 (1978).

    Google Scholar 

  • Wey, M. Y. and Chang, C. L., “Kinetic Study of Polymer Incineration,”Polymer Degradation and Stability,48, 25 (1995).

    Article  CAS  Google Scholar 

  • Wu, S. Y. and Baeyens, I, “Effect of Operating Temperature on Minimum Fluidization Velocity,”Powder Technol.,67, 217 (1991).

    Article  CAS  Google Scholar 

  • Wu, S. Y. and Chu, C. Y., “Attrition in a Gas Fluidized Bed with Single High Velocities Vertical Nozzle,” World Congress on Particle Technology 3rd, Brighton, U.K., 152 (1998).

  • Wu, S. Y., Baeyens, J. and Chu, C. Y., “Effect of the Grid-Velocity on Attrition in Gas Fluidized Beds,”Can. J. of Chem. Eng.,77, 738 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yen Wey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CL., Wey, MY. Effects of high temperature and combustion on fluidized material attrition in a fluidized bed. Korean J. Chem. Eng. 20, 1123–1130 (2003). https://doi.org/10.1007/BF02706947

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706947

Key words

Navigation