Skip to main content
Log in

Effects of interface hydrophilicity and metallic compounds on water-splitting efficiency in bipolar membranes

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Bipolar membranes (BPMs) were prepared by using commercial ion exchange membranes and hydrophilic polymer as a binder to investigate the effects of the interface hydrophilicity on water-splitting capacity. In this study, polyHEMA/MPD cross-linked with TMC was used as a binding material to enhance the BPM interface hydrophilicity. The enhanced hydrophilicity of the BPM interface accelerated the water-splitting reaction because the hydrophilic polymer layer increases the water activity by attracting water from the ion exchange layers to the space charge region. In addition, a mechanism of the metal catalytic reaction was proposed. Metal species were immobilized in the BPM in a hydroxide form and possibly react with water molecules and the quaternary ammonium groups reversibly. It was also observed that metal species immobilized in the membrane improved the water-splitting efficiency by increment of the membrane wetness and enhancement of the membrane conductivity, with an apparent optimum metal concentration for the water-splitting reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, B., Gerner, F. J. and Strathmann, H., “Development of Bipolar Membranes,”Desalination,68, 279 (1988).

    Article  CAS  Google Scholar 

  • Cherif, A. T., Molenat, J. and Elmidaoui, A., “Nitric Acid and Sodium Hydroxide Generation by Electrodialysis using Bipolar Membranes,”J. Appl. Electrochem.,27,1069 (1997).

    Article  CAS  Google Scholar 

  • Chiao, Y. C., Chlanda, F. P. and Mani, K. N., “Bipolar Membranes for Purification of Acids and Bases,”J. Memb. Sci.,61, 239 (1991).

    Article  CAS  Google Scholar 

  • Choi, J.-S., Song, I.-K. and Lee, W.-Y., “A Composite Catalytic Polymer Membrane Reactor Using Heteropolyacid-Blended Polymer Membrane,”Korean J. Chem. Eng.,17, 280 (2000).

    Article  CAS  Google Scholar 

  • Graillon, S., Persin, F., Pourcelly, G. and Gavach, C., “Development of Electrodialysis with Bipolar Membrane for the Treatment of Concentrated Nitrate Effluents,”Desalination,107, 159 (1996).

    Article  CAS  Google Scholar 

  • Hanada, P. et al, US Patent 5,221,455 (1993).

  • Jialin, L., Yazhen, W., Changying, Y., Guangdou, L. and Hong, S., “Membrane Catalytic Deprotonation Effects,”J. Memb. Sci.,147, 247 (1998).

    Article  Google Scholar 

  • Kim, H.-S, Han, J.-W., Chun, K.-Y., Shul, Y.-G. and Joe, Y.-I., “Synthesis of Organic-Inorganic Composite Membrane by Sol-Gel Process,”Korean J. Chem. Eng.,12, 405 (1995).

    Article  CAS  Google Scholar 

  • Kim, Y.-H. and Moon, S.-H., “Lactic Acid Recovery from Fermentation Broth Using One-stage Electrodialysis,”J. Chem. Technol. and Biotechnol.,176, 1 (2001).

    Google Scholar 

  • Lee, E.-G., Moon, S.-H., Chang, Y.-K., Yoo, I.-K. and Chang, H.-N., “Lactic Acid Recovery using Two-stage Electrodialysis and its Modeling,”J. Memb. Sci.,145, 53 (1998).

    Article  CAS  Google Scholar 

  • Lee, J.-K., Song, I.-K. and Lee, W.-Y., “Separation of H2/CO by The Selective Sorption Property of H3Pmo12O40 Embedded in Polyvinylalchol Membrane,”Korean J. Chem. Eng.,12, 384 (1995).

    Article  CAS  Google Scholar 

  • Liu, K. J., Chlanda, F. P. and Nagasubramanian, K., “Application of Bipolar Membrane Technology: A Novel Process for Control of Sulfur Dioxide from Flue Gases,”J. Memb. Sci.,3, 57 (1978a).

    Article  CAS  Google Scholar 

  • Liu, K. J., Nagasubramanian, K. and Chlanda, F. P., “Membrane Electrodialysis Process for Recovery of Sulfur Dioxide from Power Plant Stack Gases,”J. Memb. Sci.,3, 71 (1978b).

    Article  CAS  Google Scholar 

  • Mafe, S. and Manzanares, J. A., “Model for Ion Transport in Bipolar Membranes,”Physical Review A,42, 6245 (1990).

    Article  CAS  Google Scholar 

  • Mani, K. N., Chlanda, F. P. and Byszewski, C. H., “Aquatech Membrane Technology for Recovery of Acid/Base Values from Salt Streams,”Desalination,68,149 (1988).

    Article  CAS  Google Scholar 

  • Nagasubramanian, K., Chlanda, F. P. and Liu, K. J., “Use of Bipolar Membranes for Generation of Acid and Base — An Engineering and Economic Analysis,”J. Memb. Sci.,2, 109 (1977).

    Article  CAS  Google Scholar 

  • Onsager, L., “Deviation from Ohms Law in Weak Electrolytes,”J. Chem. Phys.,2, 599 (1934).

    Article  CAS  Google Scholar 

  • Pineri, M., Jesior, J. C. and Coey, J. M. D., “Iron Oxide Particles in a Perfluorosulfonate Membrane,”J. Memb. Sci.,24, 325 (1985).

    Article  CAS  Google Scholar 

  • Pomogailo, A. D., “Polymeric Immobilized Metal Complex Catalysts,” Moscow: Nauka (1988).

    Google Scholar 

  • Ramirez, P., Aguilella, V. M., Manzanares, J. A. and Mafe, S., “Effects of Temperature and Ion Transport on Water Splitting in Bipolar Membranes,”J. Memb. Sci.,73,191 (1992).

    Article  CAS  Google Scholar 

  • Salamone, J. C., “Polymeric Materials Encyclopedia,” CRC press (1996).

  • Sata, T., “Properties of Ion-Exchange Membranes Combined Anisotropically with Conducting Polymers. 2. Relationship of Electrical Potential Generation to Preparation Conditions of Composite Membranes,”Chem. Mater.,3, 838 (1994).

    Article  Google Scholar 

  • Shimizu, K. and Tanioka, A., “Effect of Interface Structure and Amino Groups on Water Splitting and Rectification Effects In Bipolar Membranes,”Polymer,38,5441 (1997).

    Article  CAS  Google Scholar 

  • Simons, R., “Novel Method for Preparing Bipolar Membranes,”ElectrochimicaActa,31,1175 (1986).

    Article  CAS  Google Scholar 

  • Simons, R., “Preparation of a High Performance Bipolar Membrane,”J. Memb. Sci.,78,13 (1993).

    Article  CAS  Google Scholar 

  • Simons, R., “Water Splitting in Ion Exchange Membranes,”Electrochimica Acta,30, 275 (1985).

    Article  CAS  Google Scholar 

  • Strathmann, H., Krol, J. J., Rapp, H. J. and Eigenberger, G., “Limiting Current Density and Water Dissociation in Bipolar Membranes,”J. Memb. Sci.,125, 123 (1997).

    Article  CAS  Google Scholar 

  • Strathmann, H., Rapp, H. J., Bauer, B. and Bell, C. M., “Better Bipolar Membranes,”Chemtech, 17 (June 1993b).

  • Strathmann, H., Rapp, H. J., Bauer, B. and Bell, C. M., “Theoretical and Practical Aspects of Preparing Bipolar Membranes,”Desalination,90, 303 (1993a).

    Article  CAS  Google Scholar 

  • Tanioka, A., Shimizu, K., Miyasaka, K., Zimmer, H. J. and Minoura, N., “Effect of Polymer Materials on Membrane Potential, Rectification and Water Splitting in Bipolar Membranes,”Polymer,37,1883 (1996).

    Article  CAS  Google Scholar 

  • The Membrane Society of Korea, “Membrane Separation,” Freedom Academy, Korea (1996).

    Google Scholar 

  • Tokuyama Co. Ltd., Bulletin-NEOSEPTA Ion Exchange Membrane (1993).

  • Zabolotskii, V. I., Ganych, V. V. and Sheldeshov, N. V., “Effect of Copper Complexes with the Ionogenic Groups of the MA-40 Anion-Exchange Membrane on the Dissociation Rate of Water Molecules in the Electric Field,”Sov. Electrochem.,27, 1098 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hyeon Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, MS., Tanioka, A. & Moon, SH. Effects of interface hydrophilicity and metallic compounds on water-splitting efficiency in bipolar membranes. Korean J. Chem. Eng. 19, 99–106 (2002). https://doi.org/10.1007/BF02706881

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706881

Key words

Navigation