Skip to main content

Applications of artificial neural networks in chemical engineering

Abstract

A growing literature within the field of chemical engineering describing the use of artificial neural networks (ANN) has evolved for a diverse range of engineering applications such as fault detection, signal processing, process modeling, and control. Because ANN are nets of basis functions, they can provide good empirical models of complex nonlinear processes useful for a wide variety of purposes. This article describes certain types of neural networks that have proved to be effective in practical applications, mentions the advantages and disadvantages of using them, and presents four detailed chemical engineering applications. In the competitive field of modeling, ANN have secured a niche that now, after one decade, seems secure.

This is a preview of subscription content, access via your institution.

References

  1. Barton, R., “Analysis and Rectification of Data from Dynamic Chemical Processes via Artificial Neural Networks,” Ph.D. Dissertation, Univ. of Texas, Austin, TX (1996).

    Google Scholar 

  2. Billings, S. A. and Voon, W. S. F., “Correlation Based Model Validity Tests for Nonlinear Models,”Intl. J. Control,44, 235 (1986).

    Article  Google Scholar 

  3. Baum, E. B. and Haussler, D., “What Size Net Gives Valid Generalization?,”Neural Comput.,1, 151 (1988).

    Article  Google Scholar 

  4. Chen, S., Billings, S. A., Cowan, C. F. N. and Grant, P.M., “Nonlinear System Identification using Radial Basic Functions,”Intl. J. Systems Sci.,21, 2513 (1990).

    Article  Google Scholar 

  5. Cybenko, G., “Approximation by Superpositions of a Sigmoidal Function,”Math. Control Signal Syst.,2, 303 (1987).

    Article  Google Scholar 

  6. Draper, N., “Straight Line Regression when Both Variables are Subjects to Error,” Proceed. 1991 Kansas State Univ. Conf. Appld. Statistics in Agriculture, 1 (1991).

  7. Elman, J. L., “Finding Structure in Time,”Cognitive Science,14, 179 (1990).

    Article  Google Scholar 

  8. Fiesler, E., “Handbook of Neural Computation,” Oxford Univ. Press, N.Y. (1996).

    Google Scholar 

  9. Franke, R., “Convergence Properties of Radial Basis Functions,”Constr. Approx.,4, 243 (1988).

    Article  Google Scholar 

  10. Fine, T. L., “Feed Forward Neural Network Methodology,” Springer, N.Y. (1999).

    Google Scholar 

  11. Fukuoka, Y., Matsuki, H., Minamitani, H. and Iskida, A., “A Modified Backpropagation Method to Avoid False Local Minima,”Neural Networks,11, 1059 (1998).

    Article  Google Scholar 

  12. Geman, S., Bienonstock, E. and Doursat, R., “Neural Networks and the Bias/Variance Dilema,”Neural Computation 4, 1 (1992).

    Google Scholar 

  13. Hertz, J.A., Krogh, A. S. and Palmer, R.G., “Introduction to the Theory of Neural Computation,” Addison Wesley (1991).

  14. Jang, S. S., Joseph, B. and Mukai, H., “Comparison of Two Approaches to One-line Parameters and State Estimation of Nonlinear Systems,”Ind. Engng. Chem. Process Dev.,25, 809 (1986).

    Article  CAS  Google Scholar 

  15. Kamruzzaman, J., Kumagai, Y. and Hikitu, H., “Study on Minimal Net Size, Convergence Behavior and Generalization Ability of Heterogeneous Backpropagation Network,”Artificial Neural Networks,2, 203 (1992).

    Google Scholar 

  16. Karjala, T.W., “Dynamic Data Rectification via Recurrent Neural Networks,” Ph.D. Dissertation, Univ. of Texas, Austin, TX (1995).

    Google Scholar 

  17. Kay, J.W. and Titterington, D.M., “Statistics and Neural Networks,” Oxford Univ. Press, Oxford (2000).

    Google Scholar 

  18. Kim, I.W., Liebman, M. J. and Edgar, T. F., “Robust Error in Variables Estimation using Nonlinear Programming,”AIChE Journal,36, 405 (1990).

    Google Scholar 

  19. Kulawski, G. J. and Brdys, N. A., “Stable Adaptive Control with Recurrent Networks,”Automatica,36, 5 (2000).

    Article  Google Scholar 

  20. Lee, C. C., Chung, P. C., Tsai, J.-R. and Chang, C. I., “Robust Radial Basic Function Networks,”IEEE Trans. SMC-Part B, Cybernetics,29, 674 (1999).

    CAS  Google Scholar 

  21. Lee, T. C., “Structure Level Adaptation for Artificial Neural Networks,” Kluwer Acad. Publ. (1991).

  22. Lippmann, R. P., “An Introduction to Computing with Neural Nets,”IEEE ASSP Magn,4, 4 (1987).

    Google Scholar 

  23. Ljung, L., “System Identification, Theory for the User,” Prentice Hall (1987).

  24. Ljung, L. and Sjoberg, J., “A System Identification Perspective on Neural Nets,”Proceed. 1992 IEEE Workshop on Neural Nets for Signal Processing, IEEE (1992).

  25. MacMurray, J. C., “Modeling and Control of a Packed Distillation Column using Artificial Neural Networks,” M.S. Thesis, Univ. of Texas, Austin, TX (1993).

    Google Scholar 

  26. Moody, J., “Prediction Risk and Architecture Selection for Neural Networks,” in From Statistics to Neural Networks, eds. V. Cherkassky, J. H. Friedman, and H. Wechsler, Springer Verlag, Berlin, 147 (1994).

    Google Scholar 

  27. Patwardhan, A. A., “Modeling and Control of a Packed Distillation Column,” Ph.D. Dissertation, Univ. of Texas, Austin, TX (1991).

    Google Scholar 

  28. Psichogious, D. and Unger, L., “A Hybrid Neural Network First Principles Approach to Process Modeling,”AIChE Journal,38, 1499 (1992).

    Article  Google Scholar 

  29. Reed, R., “Pruning Algorithms-A Survey,”IEEE Trans. Neural Net.,4, 740 (1993).

    Article  CAS  Google Scholar 

  30. Rumerhart, D. E. and McClelland, J. L., “Parallel Distributed Processing,” MIT Press,1 (1986).

  31. Seinfeld, J. H., “Optimal Stochastic Control of Nonlinear Systems,”AIChE J.,16, 1016 (1970).

    Article  Google Scholar 

  32. Sjoberg, J. and Ljung, L., “Overtraining, Regularization, and Searching for a Minimum in Neural Networks,” in Proceed. IFAC Symp. Adaptive Systems in Control and Signal Processing, IFAC, 669 (1992).

  33. Soderstrom, T., “Identification of Stochastic Linear Systems in Presence of Input Noise,”Automatica,17, 713 (1981).

    Article  Google Scholar 

  34. Suewatanakal, W., “A Comparison of Fault Detection and Classification using ANN with Traditional Methods,” Ph.D. Dissertation, Univ. of Texas, Austin, TX (1993).

    Google Scholar 

  35. van de Laar, P. and Heskes, T., “Pruning Using Parameter and Neuronal Matrices,”Neural Computation,11, 977 (1999).

    Article  Google Scholar 

  36. Werbos, P. J., “Backpropagation through Time: What it Does and How to Do It,”Proceed. IEEE,78, 1550 (1990).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David M. Himmelblau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Himmelblau, D.M. Applications of artificial neural networks in chemical engineering. Korean J. Chem. Eng. 17, 373–392 (2000). https://doi.org/10.1007/BF02706848

Download citation

Key words

  • Artificial Neural Networks
  • Control
  • Data Rectification
  • Fault Detection
  • Modeling