Skip to main content
Log in

Influence of oxidation temperature on the gas permeation and separation properties in a microporous carbon membrane

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Of thermosetting polymers, polyphenylene oxide (PPO) is considered as one of the promising alternative polymeric precursors for carbon membrane preparation. In this study, the PPO derived carbon membranes were prepared by carbonization and followed by air-oxidation as post-treatment method to modify the membrane pore structures. The characterization of the pore properties showed that air-oxidation enlarged the pore structure for the postoxidized carbon materials. The permeation results for the post-oxidized carbon membranes showed that the extent of the permeation modification was strongly dependent on the oxidation temperature. In the binary mixture gas systems, the permeation performance of the adsorbing gas species increased due to the surface diffusion mechanism. It is considered in the oxidation effect on the permeation modification that the post-oxidation of the carbon membranes increased gas permeation and separation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Centeno, T. A. and Fuertes, A. B., “Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes,”Sep. Purif. Technol.,25, 379 (2001).

    Article  CAS  Google Scholar 

  • Fuertes, A. B., “Adsorption-selective carbon membrane for gas separation,”J. Membr. Sci.,177, 9 (2000).

    Article  CAS  Google Scholar 

  • Fuertes, A. B., “Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes,”Carbon,39, 697 (2001).

    Article  CAS  Google Scholar 

  • Fuertes, A. B. and Menendez, I., “Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes,”Sep. Purif. Technol.,28, 29 (2002).

    Article  CAS  Google Scholar 

  • Hamad, F. A., Chowdhury, G. and Matsuura, T., “Sulfonated polyphenylene oxide-polyethersulfone thin-film composite membranes: effect of counterions on the gas transport properties,”J. Membr. Sci.,191, 71 (2001).

    Article  CAS  Google Scholar 

  • Hasegawa, Y., Tanaka, T. and Watanabe, K., “Separation of CO2-CH4 and CO2-N2 system using ion-exchange FAU-zeolite membrane with different Si/Al ratios,”Korean J. Chem. Eng.,19, 309 (2002).

    Article  CAS  Google Scholar 

  • Ismail, A. F. and David, L. I. B., “A review on the latest development of carbon membranes for gas separation,”J. Membr. Sci.,193, 1 (2001).

    Article  CAS  Google Scholar 

  • Jung, K. Y., So, J. H., Park, S. B. and Yang, S. M., “Hydrogen separation from the H2/N2 mixture by using a single and multi-stage inorganic membrane,”Korean J. Chem. Eng.,16, 193 (1999).

    Article  CAS  Google Scholar 

  • Kim, Y. K., Park, H. B. and Lee, Y. M., “Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties,”J. Membr. Sci.,226, 145 (2003).

    Article  CAS  Google Scholar 

  • Kim, Y. K., Park, H. B. and Lee, Y. M., “Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties,”J. Membr. Sci.,243, 9 (2004).

    Article  CAS  Google Scholar 

  • Kim, Y. K., Park, H. B. and Lee, Y. M. “Gas separation properties of carbon molecular sieve membranes derived from polyimide/polypyrrolidone blends: effect of the molecular weight of polyvinylpyrrrolidone,”J. Membr. Sci.,251, 159 (2005).

    Article  CAS  Google Scholar 

  • Kim, Y. S., Kusakabe, K., Morooka, S. and Yang, S. M., “Preparation of microporous silica membranes for gas separation,”Korean J. Chem. Eng.,18, 106 (2001).

    Article  CAS  Google Scholar 

  • Kim, S. S. and Sea, B. K., “Gas permeation characteristics of silica/alumina composite membrane prepared by chemical vapor deposition,”Korean J. Chem. Eng.,18, 322 (2001).

    Article  CAS  Google Scholar 

  • Koros, W. J. and Mahajan, R., “Pushing the limits on possibilities for large scale gas separation: Which strategies?”J. Membr. Sci.,175, 181 (2000).

    Article  CAS  Google Scholar 

  • Kruczek, B. and Matsuura, T., “Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance,”J. Membr. Sci.,167, 203 (2000).

    Article  CAS  Google Scholar 

  • Lee, K. H. and Hwang, S. T., “The transport of condensible vapors through a microporous vycor glass membrane,”J. Colloid Interf. Sci.,110, 544 (1986).

    Article  CAS  Google Scholar 

  • Moon, J. H., Ahn, H., Hyun, S. H. and Lee, C. H., “Separation characteristics of tetrapropylammoniumbromide templating silica/alumina composite membrane in CO2/N2, CO2/H2 and CH4/H2 systems,”Korean J. Chem. Eng.,21, 477 (2004).

    Article  CAS  Google Scholar 

  • Rao, M. B. and Sircar, S., “Performance and pore characterization of nanoporous carbon membranes for gas separation,”J. Membr. Sci.,110, 109 (1996).

    Article  CAS  Google Scholar 

  • Robeson, L. M., “Correlation of separation factor versus permeability for polymeric membranes,”J. Membr. Sci.,62, 165 (1991).

    Article  CAS  Google Scholar 

  • Saufi, S. M. and Ismail, A. F., “Fabrication of carbon membranes for gas separation — a Review,”Carbon,42, 241 (2004).

    Article  CAS  Google Scholar 

  • Shusen, W., Meiyun, Z. and Zhizhong, W., “Asymmetric molecular sieve carbon membranes,”J. Membr. Sci.,109, 267 (1996).

    Article  CAS  Google Scholar 

  • Sing, K. S.W., Everett, D. H., Haul, R. A. W., Mosocou, L., Pirtotti, R. A., Rouqurol, J. and Siemieniewska, T., “Reporting physisorption data for gas/solid systems,”Pure & Appl. Chem.,57, 603 (1985).

    CAS  Google Scholar 

  • Sircar, S., Rao, M. B. and Thaeron, C. M. A., “Selective surface flow membrane for gas separation,”Sep. Sci. Technol.,34, 2081 (1999).

    Article  CAS  Google Scholar 

  • Story, B. and Koros, W. J., “Sorption and transport of CO2 and CH4 in chemically modified poly(phenylene oxide),”J. Membr. Sci.,67, 191 (1992).

    Article  CAS  Google Scholar 

  • Suda, H. and Haraya, K., “Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide,”J. Phys. Chem. B,101, 3988 (1997).

    Article  CAS  Google Scholar 

  • Suda, H. and Haraya, K., “Carbon molecular sieve membranes: preparation, characterization, and gas permeation properties,”ACS Symposium Series,744, 295 (2000).

    Article  CAS  Google Scholar 

  • Yamamoto, M., Kusakabe, K., Hayashi, J. and Morooka, S., “Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube,”J. Membr. Sci.,133, 195 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Joo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HJ., Suda, H., Haraya, K. et al. Influence of oxidation temperature on the gas permeation and separation properties in a microporous carbon membrane. Korean J. Chem. Eng. 23, 435–440 (2006). https://doi.org/10.1007/BF02706746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706746

Key words

Navigation