Skip to main content
Log in

Computational materials science: The emergence of predictive capabilities of material behaviour

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

The availability of high performance computers and development of efficient algorithms has led to the emergence of computational materials science as the third branch of materials research complementing the traditional theoretical and experimental approaches. It has created new virtual realities in materials design that are either experimentally not realizable easily or are prohibitively expensive. The possibilities of doing calculations from first principles have led to predictive capabilities that open up new avenues of discovering novel materials with desired properties, understanding material behaviour on the nano- to the macroscopic scale and helping research in new frontiers that could interface between nano-materials and drug design, as well as in understanding biological systems. Here, we describe some significant recent developments related to alloy and steel design as well as the study of matter on the nano-scale — an area that has gained much prominence in current materials research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh M H, Wagner L, Mitas L 2002 Observation of a magic discrete family of ultrabright Si nanoparticles.Appl. Phys. Lett. 80: 841–843

    Article  Google Scholar 

  • Bergeron D E, Castleman A W Jr 2002 Insights into the stability of silicon and metal-doped silicon cluster ions: Reactive etching with O2. InInt. Symp. on Small Particles and Inorganic Clusters 11, Strasbourg.

  • Besenbacher F, Chorkendorff I, Clausen B S, Hammer B, Molenbroek A M, Norskov J K, Stensgaard I 1998 Design of a surface alloy catalyst for steam reforming.Science 279: 1913–1915

    Article  Google Scholar 

  • Bulatov V, Abraham F F, Kubin L, Devincre B, Yip S 1998 Connecting atomistic and mesoscale simulations of crystal plasticity.Nature (London) 391: 669–672

    Article  Google Scholar 

  • Cahn R W 2001 Rapid alloy assessment.Nature (London) 410: 643–644

    Article  Google Scholar 

  • Car R, Parrinello M 1985 Unified approach for molecular dynamics and density-functional theory.Phys. Rev. Lett. 55: 2471–2474

    Article  Google Scholar 

  • Ceder G, Chiang Y-M, Sadoway D R, Aydinol M K, Jang Y-I, Huang B 1998 Identification of cathode materials for lithium batteries guided by first-principles calculations.Nature (London) 392: 694–696

    Article  Google Scholar 

  • Diaz de la Rubia T, Zbib H M, Khraishi T A, Wirth B D, Victoria M, Caturia M J 2000 Multi-scale modelling of plastic flow localization in irradiated material.Nature (London) 406: 871–874

    Article  Google Scholar 

  • Diederich T, Döppner T, Braune J, Tiggesbäumker, Meiwes-Broer K-H 2001 Electron delocalization in magnesium clusters grown in supercooled helium.Phys. Rev. Lett. 86: 4807–4810

    Article  Google Scholar 

  • Eberhardt M, 1994 Computational metallurgy.Science 265: 332–333

    Article  Google Scholar 

  • Foulkes M, Mitas L, Needs R, Rajagopal G 2001 Quantum Monte Carlo for solids.Rev. Mod. Phys. 73: 33–83

    Article  Google Scholar 

  • Ho K-M, Shvartsburg A A, Pan B, Lu Z-Y, Wang C-Z, Wacker J G, Fye J L, Jarrold M F1998 Structures of medium-sized silicon clusters.Nature (London) 392: 582–585

    Article  Google Scholar 

  • Hohenberg P, Kohn W 1964 Inhomogeneous electron gas.Phys. Rev. 136: B864–871

    Article  MathSciNet  Google Scholar 

  • Jacobsen C J H, Dahl S, Clausen B S, Bahn S, Logadottir A, Nrskov J K 2001 Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts.J. Am. Chem. Soc. 123: 8404–8405

    Article  Google Scholar 

  • Johannesson G H, Bligaard T, Ruban A V, Skriver H L, Jacobsen K W, N0rskov J K 2002 Combined electronic structure and evolutionary search approach to materials design.Phys. Rev. Lett. 88: 255506–1–255506–5

    Article  Google Scholar 

  • Kawamura H, Kumar V, Sun Q, Kawazoe Y 2002 Magic behaviour and bending nature in hydrogenated carbon clusters.Phys. Rev. B65: 045406–1–045406–11

    Google Scholar 

  • Kohn W, Sham L J 1965 Self-consistent equations including exchange and correlation effects.Phys. Rev. 140:A1133–1138

    Article  MathSciNet  Google Scholar 

  • Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R 1990Nature (London) 347: 354–358

    Article  Google Scholar 

  • Kroes G-J, Gross A, Baerends E-J, Scheffler M, Mccormack D A 2002 Quantum theory of dissociative chemisorption on metal surfaces.Acc. Chem. Res. 35: 193–200

    Article  Google Scholar 

  • Kumar V 1981 Chemical compositions at alloy surfaces.Phys. Rev. B23: 3756–3764

    Google Scholar 

  • Kumar V 1998 Structure and electronic properties of Al14 and Al13Na clusters.Phys. Rev. B57: 8827–8829

    Google Scholar 

  • Kumar V 1999 Al10Li8: A magic compound cluster.Phys. Rev. B60: 2916–2920

    Google Scholar 

  • Kumar V, Car R 1991 Structure, growth, and bonding nature of Mg clusters.Phys. Rev. B44: 8243–8255

    Google Scholar 

  • KumarV, Kawazoe Y, 2001a Hund’s rule in metal clusters: Prediction of high magnetic moment state of Al12Cu from first-principles calculations.Phys. Rev. B64: 115405–1–115405–5

    Google Scholar 

  • Kumar V, Kawazoe Y 2001b Evolution of electronic states and abnormal multishell relaxations in strontium clusters.Phys. Rev. B63: 075410–1–075410–9

    Google Scholar 

  • Kumar V, Kawazoe Y 2001c Metal-encapsulated fullerenelike and cubic caged clusters of silicon.Phys. Rev. Lett. 87: 045503–1–045503–4

    Google Scholar 

  • Kumar V, Kawazoe Y 2002a Icosahedral growth, magnetic behaviour, and adsorbate-induced metalnonmetal transition in palladium clusters.Phys. Rev. B66: 144413–1–144413–11

    Google Scholar 

  • Kumar V, Kawazoe Y 2002b Atomic and electronic structures of niobium clusters.Phys. Rev. B65: 1254031–12540311

    Google Scholar 

  • Kumar V, Kawazoe Y 2002c Magic behaviour of Si15M and Si16M (M = Cr, Mo, and W) clusters.Phys. Rev. B65: 073404–1–073404–4

    Google Scholar 

  • Kumar V, Kawazoe Y 2002d Metal-encapsulated caged clusters of germanium with large gaps and different growth behaviour than silicon.Phys. Rev. Lett. 88: 235417–1–235417–4

    Google Scholar 

  • Kumar V, Kawazoe Y 2002e Metal-encapsulated icosahedral superatoms of germanium and tin with large gaps: Zn@Ge12 and Cd@Sn12.Appl. Phys. Lett. 80: 859–861

    Article  Google Scholar 

  • Kumar V, Kawazoe Y 2002f Hydrogenated Si fullerenes: Effects of H on the stability of metal encapsulated Si clusters.Phys. Rev. Lett, (in press)

  • Kumar V, Sundararajan V 1998 Ab initio molecular-dynamics studies of doped magic clusters and their interaction with atoms.Phys. Rev. B57: 4939–4942

    Google Scholar 

  • Kumar V, Andersen, O K, Mookerjee A, (eds) 1994Lectures on methods of electronic structure calculations (Singapore: World Scientific)

    Google Scholar 

  • Kumar V, Bhattacharjee S, Kawazoe Y 2001 Silicon-doped icosahedral, cuboctahedral, and decahedral clusters of aluminum.Phys. Rev. B61: 8541–7

    Google Scholar 

  • Kumar V, Esfarjani K, Kawazoe Y 2002a Ab initio computer simulations on microclusters: Structure and electronic properties. InClusters and nanomaterials: (Springer Series in Cluster Physics) (eds) Y Kawazoe, T Kondow, K Ohno (Springer: Heidelberg) pp 9–88

    Google Scholar 

  • Kumar V, Majumder C, Kawazoe Y 2002b M@Sii6, M = Ti, Zr, and Hf: pi conjugation, ionization potentials and electron affinities.Chem. Phys. Lett. 363: 319–322

    Article  Google Scholar 

  • Leung T C, Chan C T, Harmon B N 1991 Ground-state properties of Fe, Co, Ni, and their monoxides: Results of the generalized gradient approximation.Phys. Rev. B44: 2923–2927

    Google Scholar 

  • Lechermann F, Welsch F, Elsässer C, Ederer C, Fähnle M, Sanchez J M, Meyer B 2002 Density-functional study of Fe3Al: LSDA versus GGA.Phys. Rev. B65: 132104–1–132104–4

    Google Scholar 

  • Li X, Wang L-S 2002 Experimental search and characterization of icosahedral clusters: Al2X” (X = C, Ge, Sn, Pb).Phys. Rev. B65: 153404–1–153404–4

    Google Scholar 

  • Majumder C, Kumar V, Mizuseki H, Kawazoe Y 2001 Small clusters of tin: Atomic structures, energetics, and fragmentation behaviour.Phys. Rev. B64: 2334051–2334054

    Google Scholar 

  • Mulvaney P 2001 Not all that’s gold does glitter.MRS Bull. December: 1009–1014

  • Mohn P, Persson C, Blaha P, Schwarz K, Novák, P, Eschrig H 2001 Correlation Induced Paramagnetic Ground State in FeAl.Phys. Rev. Lett. 87: 1964011–1964014

    Article  Google Scholar 

  • Ohara M, Nakajima A, Kaya K 2002 Geometric structures of metal (M)-doped silicon clusters (M = Ti and Hf). InInt. Symp. on Small Particles and Inorganic Clusters 11 Strasbourg

  • Olsen G B 1997 Computational design of hierarchically structured materials.Science 277: 1237–1242

    Article  Google Scholar 

  • Perdew J P, Wang Y 1992 Accurate and simple analytic representation of the electron-gas correlation energy.Phys. Rev. B45: 13244–9

    Google Scholar 

  • Perdew J P, Burke K, Ernzerhof M 1996 Generalized gradient approximation made simple.Phys. Rev. Lett. 77: 3865–3868; 1997 78: 1396 (E)

    Article  Google Scholar 

  • Polman A 2002 Teaching silicon new tricks.Nature Mater. 1: 10–11

    Article  Google Scholar 

  • Puzder A, Williamson A J, Grossman C, Galli G 2002 Surface chemistry of silicon nanoclusters.Phys. Rev. Lett. 88: 097401–1–097401–4

    Article  Google Scholar 

  • Schriver K E, Persson J L, Honea E C, Whetten R L 1990 Electronic shell structure of group-IIA metal atomic clusters.Phys. Rev. Lett. 64: 2539–2542

    Article  Google Scholar 

  • Shvartsburg A A, Jarrold M F 2000 Solid clusters above the bulk melting point.Phys. Rev. Lett. 85: 2530–2532

    Article  Google Scholar 

  • Singh A K, Kumar V, Briere T M, Kawazoe Y 2002 Cluster assembled metal encapsulated thin nanotubes of silicon.Nano Lett. 2: 1243–1248

    Article  Google Scholar 

  • Skriver H L 1985 Crystal structure from one electron theory.Phys. Rev. B31: 909–923

    Google Scholar 

  • luiter M H F, Kumar V, Kawazoe Y 2002 Symmetry-driven phase transformations in single-wall carbon-nanotube bundles under hydrostatic pressure.Phys. Rev. B65: R1 61402–1–162402–4

    Google Scholar 

  • Sun Q, Wang Q, Briere T M, Kumar V, Kawazoe Y, Jena P 2002 First-principles calculations of metal stabilized Si20 cages.Phys. Rev. B65: 2354171–2354174

    Google Scholar 

  • Thomas O C, Zheng W, Bowen Jr K H 2001 Magic numbers in copper-doped aluminum cluster anions.J. Chem. Phys. 114: 5514–5519

    Article  Google Scholar 

  • Thomas O C, Zheng W, Xu S, Bowen Jr K H 2002 Onset of metallic behaviour in magnesium clusters.Phys. Rev. Lett. 89: 213403–1–213403–4

    Google Scholar 

  • Vitos L, Abrikosov I A, Johansson B 2001 Anisotropic lattice distortions in random alloys from firstprinciples theory.Phys. Rev. Lett. 87: 1564011–1564014

    Article  Google Scholar 

  • Vitos L, Korzhavyi P A, Johansson B 2002a Elastic property maps of austenitic stainless steels.Phys. Rev. Lett. 88: 155501–1–155501–4

    Article  Google Scholar 

  • Vitos L, Korzhavyi PA, Johansson B 2002b Modelling of alloy steels.Materials Today October: 14–23

  • Wang C S, Klein B M, Krakauer H 1985 Theory of melting and structural ordering in iron.Phys. Rev. Lett. 54: 1852–1855

    Article  Google Scholar 

  • Wu R, Freeman A J, Olsen G B 1994 First principles determination of the efects of phosphorous and boron on iron grain boundary cohesion.Science 265: 376–380

    Article  Google Scholar 

  • Yin M T, Cohen M L 1982 Theory of static structural properties, crystal stability, and phase transformations: Application to Si and Ge.Phys. Rev. B26: 5668–5687

    Google Scholar 

  • Zhang P, Crespi V H, Chang E, Louie S G, Cohen M L 2001 Computational design of direct-bandgap semiconductors that lattice-match silicon.Nature (London) 409: 69–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V. Computational materials science: The emergence of predictive capabilities of material behaviour. Sadhana 28, 815–831 (2003). https://doi.org/10.1007/BF02706461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706461

Keywords

Navigation