Advertisement

Sadhana

, Volume 28, Issue 3–4, pp 799–814 | Cite as

In-situ studies on phase transformations under electron irradiation in a high voltage electron microscope

  • S. Banerjee
Article

Abstract

High voltage electron microscopy (HVEM), using electron energies adequate for causing displacements of atoms from lattice sites, is a very effective technique for studying mechanisms of solid state phase transformations and for charting the path of phase evolution in real time. This has been demonstrated in studies on chemical ordering in nickel-molybdenum alloys and on theβ → Ω displacement ordering in zirconium-niobium alloys. The enhanced diffusivity due to electron irradiation makes it possible to explore a sequence of phase evolution at low enough temperatures where even some first-order transformations are driven by free energy (G) instabilities with respect to the relevant order parameter (η). Specific issues addressed in these studies are reviewed in this paper.

Keywords

Electron irradiation phase transformations chemical ordering displacement ordering electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya A, Banerjee S, Das G P, Dasgupta I, Saha-Dasgupta T, Mookerjee A 2001Acta Metall. 49: 3575Google Scholar
  2. Banerjee S 1989Phase Transformations 16/17: 389CrossRefGoogle Scholar
  3. Banerjee S, Urban K, Wilkens M 1984Acta Metall. 32: 299CrossRefGoogle Scholar
  4. Banerjee S, Kulkarni U D, Urban K 1989Acta Metall. 37: 35CrossRefGoogle Scholar
  5. Bellon P, Martin G 1998Phys. Rev. B23 3322Google Scholar
  6. Chevalier J P, Stobbs W M 1979Acta Metall. 27: 1197CrossRefGoogle Scholar
  7. Das S K, Thomas G 1974aOrder-disorder transformations in alloys (éd.) H P Warlincont (Berlin: Springer) p. 332Google Scholar
  8. Das S K, Thomas G 1974bPhys. Stat. Sol. A21: 177CrossRefGoogle Scholar
  9. Das S K, Okamoto P R, Fisher P M J, Thomas G 1973Acta Metall. 121: 913Google Scholar
  10. De Fontaine D 1975Acta Metall. 23: 553CrossRefGoogle Scholar
  11. De Ridder R, Van Tendeloo, Amelinckx S 1976Acta Crystallogr. A32: 216Google Scholar
  12. Hata S, Matsumura S, Kuwano N, Oki K 1998 Acta Mater. 46: 881CrossRefGoogle Scholar
  13. Kulkarni U D, Banerjee S 1988Acta Metall. 36: 413CrossRefGoogle Scholar
  14. Lee K H, Hiroga K, Shindo D, Hirabayashi M 1988Acta Metall. 36: 641CrossRefGoogle Scholar
  15. Martin G, Poisson F, Bellon P 1993J. Nucl. Mater. 205: 301CrossRefGoogle Scholar
  16. Martin P L, Williams J C 1984 32: 1681, 1694Google Scholar
  17. Mayer J, Urban K 1985Acta Metall. 33: 539CrossRefGoogle Scholar
  18. Okamoto P R, Thomas G 1971Acta Metall. 19: 825CrossRefGoogle Scholar
  19. Penisson J M, Bourret A 1975Microscopic Electronique a Haute Tension (Paris: SFEM) p. 205Google Scholar
  20. Russell K C 1984Progr. Mater. Sci. 28: 229CrossRefGoogle Scholar
  21. Schulson E M 1979J. Nucl. Mater. 83: 239CrossRefGoogle Scholar
  22. Sundararaman M, Banerjee S, Wollenberger H 1995Acta Metall. 43: 107Google Scholar
  23. Van Tendeloo G 1976Mater. Sci. Eng. 26: 209CrossRefGoogle Scholar
  24. Van Tendeloo G, Amelickx S, de Fontaine D 1985Acta Crystallogr. B41: 281Google Scholar

Copyright information

© Printed in India 2003

Authors and Affiliations

  • S. Banerjee
    • 1
  1. 1.Materials Science DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations