Skip to main content
Log in

Structural morphology of amorphous conducting carbon film

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900° C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amar J G, Lam P M and Family F 1993Phys. Rev. E47 3242

    Google Scholar 

  • Bachtold A, Hadley P, Nakanishi T and Dekker C 2001Science 294 1317

    Article  CAS  Google Scholar 

  • Barabasi A L and Stanley H E 1995Fractal concepts in surface growth (Cambridge: Cambridge University Press)

    Google Scholar 

  • Berry M V and Hannay J H 1978Nature 273 573

    Article  CAS  Google Scholar 

  • Casiraghi T C, Ferrari A C and Robertson J 2005Diamond Relat. Mater. 14 913

    Article  CAS  Google Scholar 

  • Chhowalla M, Yin Y, Amaratunga G A J, Mckenzie D R and Frauenheim T 1996Appl. Phys. Lett. 69 2344

    Article  CAS  Google Scholar 

  • Dimigen H, Hubsch H and Memming R 1997Appl. Phys. Lett. 50 1056

    Article  Google Scholar 

  • Family F and Vicsek T 1985J. Phys. A18 L75

    Google Scholar 

  • Feder J 1988Fractals (New York: Plenum) Ch. 14

    Google Scholar 

  • Franklin R E 1950Acta Crystallogr. 3 107

    Article  CAS  Google Scholar 

  • Freidmann T A, Sullivan J P, Knapp J A, Talland D R, Follstaedt D M, Medlin D L and Mirkarimi P B 1997Appl. Phys. Lett. 71 3820

    Article  Google Scholar 

  • Hembacher S, Giessibl F J, Mannhart J and Quate C F 2003Proc. Nat. Acad. Sci. 100 12542

    Article  CAS  Google Scholar 

  • Javey A, Guo J, Farmer D B, Wang Q, Wang D, Gordon R G, Lundstrom M and Dai H 2004Nanoletters 4 447

    CAS  Google Scholar 

  • Lu T M, Yang H N and Wang G C 1995 inFractal aspects of materials (eds) F Familyet al, MRS symposia proceedings No. 367 (Pittsburgh: Materials Research Society) p. 283

    Google Scholar 

  • Merkulov V I, Lowndes D H and Baylor L R 1999Appl. Phys. Lett. 75 1228

    Article  CAS  Google Scholar 

  • Obraztsov A N, Volkov A P and Pavlovsky I 2000Diamond Relat. Mater. 9 1190

    Article  CAS  Google Scholar 

  • Orwa J O, Andrienko I, Peng J L, Prawer S, Zhang Y B and Lau S P 2004J. Appl. Phys. 96 6286

    Article  CAS  Google Scholar 

  • Racine B, Ferrari A C, Morrison N A, Hutchings I, Milne W I and Robertson J 2001J. Appl. Phys. 90 5002

    Article  CAS  Google Scholar 

  • Ruland W 1968 inChemistry and physics of carbon (ed.) P L Walker Jr (New York: Marcel Dekker)Vol. 4, pp 1–84

    Google Scholar 

  • Rusop M, Mominuzzaman S M, Soga T and Jimbo T 2004Diamond Relat. Mater. 13 2180

    Article  CAS  Google Scholar 

  • Sayeed Ahmed 1998Structural and electrical properties of amorphous conducting carbon films, Ph.D. thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  • Sayles R S and Thomas T R 1978Nature 271 431

    Article  Google Scholar 

  • Subramanyam S V 1996Indian J. Pure & Appl. Phys. 34 595

    Google Scholar 

  • Subramanyam S V, Sayeed A, Meenakshi V, Bhattacharya S, Cholli A and Tripathi S 1997J. Appl. Phys. 81 2907

    Article  CAS  Google Scholar 

  • Umehara Y, Murai S, Koide Y and Murakami M 2002Diamond Relat. Mater. 11 1429

    Article  CAS  Google Scholar 

  • Voss R F 1985 inScaling phenomena in disordered systems (eds) R Pynn and A Skejeltorp (New York: Plenum) pp 1–11

    Google Scholar 

  • Wolf D E and Villain J 1990Europhys. Lett. 13 389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Subramanyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishwakarma, P.N., Prasad, V., Subramanyam, S.V. et al. Structural morphology of amorphous conducting carbon film. Bull Mater Sci 28, 609–615 (2005). https://doi.org/10.1007/BF02706351

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706351

Keywords

Navigation