Advertisement

Bulletin of Materials Science

, Volume 25, Issue 2, pp 163–168 | Cite as

Carbonaceous alumina films deposited by MOCVD from aluminium acetylacetonate: a spectroscopic ellipsometry study

  • M. P. Singh
  • G. Raghavan
  • A. K. Tyagi
  • S. A. Shivashankar
Article

Abstract

Spectroscopic ellipsometry was used to characterize carbonaceous, crystalline aluminium oxide films grown on Si(100) by low-pressure metal organic chemical vapour deposition, using aluminium acetylacetonate as the precursor. The presence of carbon in the films, attributed to the use of a metalorganic precursor for the deposition of films, was identified and analysed by secondary ion mass spectroscopy and X-ray photoelectron spectroscopy, for the elemental distribution and the chemical nature of the carbon in the films, respectively. Ellipsometry measurements over the photon energy range 1.5–5 eV were used to derive the pseudo-dielectric function of the aluminium oxide-containing films. Multi-layer modelling using linear regression techniques and the effective medium approximation were carried out to extract the structural details of the specimens. The excellent fit between the simulated and experimental optical data validates the empirical model for alumina-containing coatings grown by MOCVD.

Keywords

Aluminium oxide optical properties ellipsometry MOCVD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azzam R M A and Bashara N M 1989Ellipsometry and polarized light (Amsterdam: North-Holland) Ch.3Google Scholar
  2. Buchanan D A 1999IBM J. Res. Develop. 43 245CrossRefGoogle Scholar
  3. Briggs D and Seah M P 1989Practical surface analysis (New York: John Wiley & Son Ltd) 2nd ed.,Vol. 1 Google Scholar
  4. Chryssou C E and Pitt C W 1997Appl. Phys. A65 469Google Scholar
  5. Cilioberto E, Fragala I, Rizza R, Spoto G and Allen G C 1995Appl. Phys. Lett. 67 1624CrossRefGoogle Scholar
  6. Ealet B, Elyakhloufi M H, Gillet E and Ricci M 1994Thin Solid Films 250 92CrossRefGoogle Scholar
  7. Gilbert Aet al 2001Appl. Phys. Lett. 78 1712CrossRefGoogle Scholar
  8. Haanappel V A C, van Corbach H D, Fransen T and Gellings P J 1993Thin Solid Films 239 138CrossRefGoogle Scholar
  9. Holm B, Ahuja R, Yourdshahyan Y, Johansson B and Lundqvist B I 1999Phys. Rev. B59 12777Google Scholar
  10. Kim J S, Marzouk H A, Reucroft P J, Robertson J D and Hamrin C E 1993Appl. Phys. Lett. 62 681CrossRefGoogle Scholar
  11. Ludeke R, Cubers M T and Cartier E 2000Appl. Phys. Lett. 76 2886CrossRefGoogle Scholar
  12. Maruyama T and Arai S 1992Appl. Phys. Lett. 60 322CrossRefGoogle Scholar
  13. Montaigne F, Gogol P, Briatico J, Maurice J L, Nguyen Van Dau F, Petroff F, Fert A and Schuhl A 2000Appl. Phys. Lett. 76 3286CrossRefGoogle Scholar
  14. Pande K P, Nair V K R and Gutierrez D 1983J. Appl. Phys. 54 5436CrossRefGoogle Scholar
  15. Singh M P, Mukhopadhayay S, Anjana Devi and Shivashankar S A 2000Mater. Res. Soc. Symp. Proc. 648 P6.47.1Google Scholar
  16. Singh M P, Shripathi T and Shivashankar S A 2002Int. J. Mod. Phys. B16 (in press)Google Scholar
  17. Sopra E S V G 1997 Operating ManualGoogle Scholar
  18. Zhao Y W and Suhr H 1992Appl. Phys. A55 176Google Scholar

Copyright information

© Indian Academy of Sciences 2002

Authors and Affiliations

  • M. P. Singh
    • 1
  • G. Raghavan
    • 1
    • 2
  • A. K. Tyagi
    • 1
    • 2
  • S. A. Shivashankar
    • 1
  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  2. 2.Materials Science DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations