Skip to main content
Log in

Evolution of classical projected phase space density in billiards

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The classical phase space density projected on to the configuration space offers a means of comparing classical and quantum evolution. In this alternate approach that we adopt here, we show that for billiards, the eigenfunctions of the coarse-grained projected classical evolution operator are identical to a first approximation to the quantum Neumann eigenfunctions. Moreover, there exists a correspondence between the respective eigenvalues although their time evolutions differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Lasota and M MacKey,Chaos, fractals, and noise;stochastic aspects of dynamics (Springer-Verlag, Berlin, 1994)

    Google Scholar 

  2. P Gaspard,Chaos, scattering and statistical mechanics (Cambridge University Press, 1998)

  3. M Pollicott,Invent. Math. 81, 413 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. D Ruelle,Phys. Rev. Lett. 56, 405 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  5. M Sano,Phys. Rev. E59, R3795 (1999)

    MathSciNet  ADS  Google Scholar 

  6. D Braun,Chaos 9, 730 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. C Manderfeld, J Weber and F Haake,J. Phys. A34, 9893 (2001)

    MathSciNet  ADS  Google Scholar 

  8. S Nonnenmacher,Nonlinearity 16, 1685 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. R R Puri,Mathematical methods of quantum optics (Springer, Berlin, 2001)

    MATH  Google Scholar 

  10. W Zhang, D Feng and R Gilmore,Rev. Mod. Phys. 62, 867 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  11. T A Driscoll and H P W Gottlieb,Phys. Rev. E68, 016702 (2003)

    MathSciNet  ADS  Google Scholar 

  12. H-J Stockmann,Quantum chaos — An introduction (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  13. J L Vega, T Uzer and J Ford,Phys. Rev. E48, 3414 (1993)

    MathSciNet  ADS  Google Scholar 

  14. D Biswas,Phys. Rev. E61, 5073 (2000)

    ADS  Google Scholar 

  15. D Biswas,Phys. Rev. E67, 026208 (2003)

    ADS  Google Scholar 

  16. The degree of polygonalization depends on the de Broglie wavelength, λ; see [12]

  17. D Biswas,Phys. Rev. E61, 5129 (2000)

    ADS  Google Scholar 

  18. D Biswas,Phys. Rev. E63, 016213 (2001)

    ADS  Google Scholar 

  19. D Biswas,Phys. Rev. Lett. 93, 204102 (2004)

    Article  ADS  Google Scholar 

  20. D Biswas and S Sinha,Phys. Rev. Lett. 70, 916 (1993)

    Article  ADS  Google Scholar 

  21. D Biswas,Phys. Rev. E54, R1044 (1996)

    ADS  Google Scholar 

  22. E J Heller,Phys. Scr. 40, 354 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J L Vega, T Uzer and J Ford,Phys. Rev. E52, 1490 (1995)

    MathSciNet  ADS  Google Scholar 

  24. D Biswas and S Sinha,Phys. Rev. E60, 408 (1999)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, D. Evolution of classical projected phase space density in billiards. Pramana - J Phys 64, 563–575 (2005). https://doi.org/10.1007/BF02706204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706204

Keywords

PACS Nos

Navigation