Skip to main content
Log in

Complex networks: Dynamics and security

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. In particular, we review two related problems: attack-induced cascading breakdown and range-based attacks on links. A cascade in a network means the failure of a substantial fraction of the entire network in a cascading manner, which can be induced by the failure of or attacks on only a few nodes. These have been reported for the internet and for the power grid (e.g., the August 10, 1996 failure of the western United States power grid). We study a mechanism for cascades in complex networks by constructing a model incorporating the flows of information and physical quantities in the network. Using this model we can also show that the cascading phenomenon can be understood as a phase transition in terms of the key parameter characterizing the node capacity. For a parameter value below the phase-transition point, cascading failures can cause the network to disintegrate almost entirely. We will show how to obtain a theoretical estimate for the phase-transition point. The second problem is motivated by the fact that most existing works on the security of complex networks consider attacks on nodes rather than on links. We address attacks on links. Our investigation leads to the finding that many scale-free networks are more sensitive to attacks on short-range than on long-range links. Considering that the small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance, our result, besides its importance concerning network efficiency and security, has the striking implication that the small-world property of scale-free networks is mainly due to short-range links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S H Strogatz,Nature (London) 410, 268 (2001)

    Article  ADS  Google Scholar 

  2. D J Watts and S H Strogatz,Nature (London) 393, 440 (1998)

    Article  ADS  Google Scholar 

  3. A-L Barabási and R Albert,Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  4. R Albert and A-L Barabási,Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  5. B Bollobás,Random graphs (Academic Press, London, 1985)

    MATH  Google Scholar 

  6. D J Watts,Small worlds (Princeton University Press, Princeton, 1999)

    Google Scholar 

  7. R Albert, H Jeong and A-L Barabási,Nature (London) 406, 378 (2000)

    Article  ADS  Google Scholar 

  8. R Cohen, K Erez, D ben-Avraham and S Havlin,Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  9. D S Callaway, M E J Newman, S H Strogatz and D J Watts,Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  10. R Cohen, K Erez, D ben-Avraham and S Havlin,Phys. Rev. Lett. 86, 3682 (2001)

    Article  ADS  Google Scholar 

  11. A Broder, R Kumar, F Maghoul, P Raghavan, S Rajagopalan, R Stata, A Tomkins and J Wiener,Comput. Netw. 33, 309 (2000)

    Article  Google Scholar 

  12. D J Watts,Proc. Natl. Acad. Sci. USA 99, 5766 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Y Moreno, J B Gómez and A F Pacheco,Europhys. Lett. 58, 630 (2002)

    Article  ADS  Google Scholar 

  14. B A Carreras, D E Newman, I Dolrou and A B Poole, inProceedings of Hawaii International Conference on System Sciences, January 4–7, 2000, Maui, Hawaii

    Google Scholar 

  15. M L Sachtjen, B A Carreras and V E Lynch,Phys. Rev. E61, 4877 (2000)

    ADS  Google Scholar 

  16. R Pastor-Satorras, A Vázquez and A Vespignani,Phys. Rev. Lett. 87, 258701 (2001)

    Article  ADS  Google Scholar 

  17. W Willinger, R Govindan, S Jamin, V Paxson and S Shenker,Proc. Natl. Acad. Sci. USA 99, 2573 (2002)

    Article  ADS  Google Scholar 

  18. K-I Goh, B Kahng and D Kim,Phys. Rev. Lett. 88, 108701 (2002)

    Article  ADS  Google Scholar 

  19. R Guimerà, A Arenas, A Días-Guilera and F Giralt, e-print cond-mat/0206077

  20. V Jacobson, inProceedings of SIGCOMM ’88 (ACM, Standford, 1998)

    Google Scholar 

  21. M E J Newman,Phys. Rev. E64, 016132 (2001)

    ADS  Google Scholar 

  22. M E J Newman,Proc. Natl. Acad. Sci. USA 98, 404 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. M Girvan and M E J Newman,Proc. Natl. Acad. Sci. USA 99, 8271 (2002)

    Article  MathSciNet  Google Scholar 

  24. P Holme, B J Kim, C N Yoon and S K Han,Phys. Rev. E65, 056109 (2002)

    ADS  Google Scholar 

  25. A E Motter and Y-C Lai,Phys. Rev. E66, 065102(R) (2002)

    ADS  Google Scholar 

  26. A E Motter, T Nishikawa and Y-C Lai,Phys. Rev. E66, 065103(R) (2002)

    ADS  Google Scholar 

  27. A P S de Moura, Y-C Lai and A E Motter,Phys. Rev. E68, 017102 (2003)

    ADS  Google Scholar 

  28. P Holme and B J Kim,Phys. Rev. E65, 066109 (2002)

    ADS  Google Scholar 

  29. K-I Goh, B Kahng and D Kim,Phys. Rev. Lett. 87, 278701 (2001)

    Article  ADS  Google Scholar 

  30. S Redner,Eur. Phys. J. B4, 131 (1998)

    ADS  Google Scholar 

  31. M Faloutsos, P Faloutsos and C Faloutsos,Comput. Commun. Rev. 29, 251 (1999)

    Article  Google Scholar 

  32. M E J Newman, S H Strogatz and D J Watts,Phys. Rev. E64, 026118 (2001)

    ADS  Google Scholar 

  33. P Erdös and A Rényi,Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    MATH  Google Scholar 

  34. http://moat.nlanr.net/AS/Data/ASconnlist.20000102.946809601

  35. ftp://ftp.santafe.edu/pub/duncan/powerunweighted

  36. L A N Amaral, A Scala, M Barthélémy and H E Stanley,Proc. Natl. Acad. Sci. USA 97, 11149 (2000)

    Article  ADS  Google Scholar 

  37. K-I Goh, C-M Ghim, B Kahng and D Kim,Phys. Rev. Lett. 91, 1898041 (2003)

    Google Scholar 

  38. K Park, Y-C Lai and N Ye,Phys. Rev. E70, 026109 (2004)

    ADS  Google Scholar 

  39. A-L Barabasi, R Albert and H Jeong,Physica A272, 173 (1999)

    ADS  Google Scholar 

  40. S A Pandit and R E Amritkar,Phys. Rev. E60, R1119 (1999)

    ADS  Google Scholar 

  41. R V Solé and J M Montoya,Proc. R. Soc. London B268, 2039 (2001)

    Article  Google Scholar 

  42. H Jeong, S P Mason, A-L Barabási and Z N Oltvai,Nature (London) 411, 41 (2001)

    Article  ADS  Google Scholar 

  43. S N Dorogovtsev and J F F Mendes,Phys. Rev. E62, 1842 (2000)

    ADS  Google Scholar 

  44. M E J Newman,Phys. Rev. E64, 016132 (2001)

    ADS  Google Scholar 

  45. V Latora and M Marchiori,Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  46. D Kennedy,Science 295, 405 (2002)

    Article  Google Scholar 

  47. F Liljeros, C R Edling, L A N Amaral, H E Stanley and Y Aberg,Nature (London) 411, 907 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, YC., Motter, A., Nishikawa, T. et al. Complex networks: Dynamics and security. Pramana - J Phys 64, 483–502 (2005). https://doi.org/10.1007/BF02706197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706197

Keywords

PACS Nos

Navigation