Skip to main content

Collective dynamics of delay-coupled limit cycle oscillators

Abstract

Coupled limit cycle oscillators with instantaneous mutual coupling offer a useful but idealized mathematical paradigm for the study of collective behavior in a wide variety of biological, physical and chemical systems. In most real-life systems however the interaction is not instantaneous but is delayed due to finite propagation times of signals, reaction times of chemicals, individual neuron firing periods in neural networks etc. We present a brief overview of the effect of time-delayed coupling on the collective dynamics of such coupled systems. Simple model equations describing two oscillators with a discrete time-delayed coupling as well as those describing linear arrays of a large number of oscillators with time-delayed global or local couplings are studied. Analytic and numerical results pertaining to time delay induced changes in the onset and stability of amplitude death and phase-locked states are discussed. A number of recent experimental and theoretical studies reveal interesting new directions of research in this field and suggest exciting future areas of exploration and applications.

This is a preview of subscription content, access via your institution.

References

  1. A T Winfree,The geometry of biological time (Springer-Verlag, New York, 1980)

    MATH  Google Scholar 

  2. Y Kuramoto,Chemical oscillations, waves and turbulence (Springer, Berlin, 1984)

    MATH  Google Scholar 

  3. S H Strogatz,Physica D143, 1 (2000) and references therein

    MathSciNet  ADS  Google Scholar 

  4. K Satoh,J. Phys. Soc. Jpn. 58, 2010 (1989)

    Article  ADS  Google Scholar 

  5. G B Ermentrout,Physica D41, 219 (1990)

    MathSciNet  ADS  Google Scholar 

  6. A A Brailove and P S Linsay,Int. J. Bifurcat. Chaos 6, 1211 (1996)

    Google Scholar 

  7. P Hadley, M R Beasley and K Wiesenfeld,Phys. Rev. B38, 8712 (1988)

    ADS  Google Scholar 

  8. K Wiesenfeld, P Colet and S H Strogatz,Phys. Rev. Lett. 76, 404 (1996)

    Article  ADS  Google Scholar 

  9. P M Varangis, A Gavrielides, T Erneux, V Kovanis and L F Lester,Phys. Rev. Lett. 78, 2353 (1997)

    Article  ADS  Google Scholar 

  10. A Hohl, A Gavrielides, T Erneux and V Kovanis,Phys. Rev. Lett. 78, 4745 (1997)

    Article  ADS  Google Scholar 

  11. G Gruner and A Zettl,Phys. Rep. 119, 117 (1985)

    Article  ADS  Google Scholar 

  12. J Benford, H Sze, W Woo, R R Smith and B Harteneck,Phys. Rev. Lett. 62, 969 (1989)

    Article  ADS  Google Scholar 

  13. I Schreiber and M Marek,Physica D5, 258(1982)

    MathSciNet  ADS  Google Scholar 

  14. M F Crowley and I R Epstein,J. Phys. Chem. 93, 2496 (1989)

    Article  Google Scholar 

  15. M Dolnik and I R Epstein,Phys. Rev. E54, 3361 (1996)

    ADS  Google Scholar 

  16. M Kawato and R Suzuki,J. Theor. Biol. 86, 547 (1980)

    Article  MathSciNet  Google Scholar 

  17. Y Kuramoto,Prog. Theor. Phys. Suppl. 79, 223 (1984)

    Article  ADS  Google Scholar 

  18. H Daido,J. Stat. Phys. 60, 753 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  19. Y Aizawa,Prog. Theor. Phys. 56, 703 (1976)

    Article  ADS  Google Scholar 

  20. M Shiino and M Frankowicz,Phys. Lett. A136, 103 (1989)

    MathSciNet  ADS  Google Scholar 

  21. M Poliashenko and S R McKay,Phys. Rev. A46, 5271 (1992)

    ADS  Google Scholar 

  22. J L Rogers and L T Wille,Phys. Rev. E54, R2193 (1996)

    ADS  Google Scholar 

  23. D G Aronson, G B Ermentrout and N Kopell,Physica D41, 403 (1990)

    MathSciNet  ADS  Google Scholar 

  24. R E Mirollo and S H Strogatz,J. Stat. Phys. 60, 245 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  25. K Bar-Eli,Physica D14, 242 (1985)

    MathSciNet  ADS  Google Scholar 

  26. P C Matthews, R E Mirollo and S H Strogatz,Physica D52, 293 (1991)

    MathSciNet  ADS  Google Scholar 

  27. H G Schuster and P Wagner,Prog. Theor. Phys. 81, 939 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  28. E Niebur, H G Schuster and D Kammen,Phys. Rev. Lett. 67, 2753 (1991)

    Article  ADS  Google Scholar 

  29. Y Nakamura, F Tominaga and T Munakata,Phys. Rev. E49, 4849 (1994)

    ADS  Google Scholar 

  30. S Kim, S H Park and C S Ryu,Phys. Rev. Lett. 79, 2911 (1997)

    Article  ADS  Google Scholar 

  31. D V Ramana Reddy, A Sen and G L Johnston,Phys. Rev. Lett. 80, 5109 (1998)

    Article  ADS  Google Scholar 

  32. D V Ramana Reddy, A Sen and G L Johnston,Physica D129, 15 (1999)

    ADS  Google Scholar 

  33. D V Ramana Reddy, A Sen and G L Johnston,Phys. Rev. Lett. 85, 3381 (2000)

    Article  ADS  Google Scholar 

  34. R Dodla, A Sen and G L Johnston,Phys. Rev. E69, 56217 (2004)

    MathSciNet  ADS  Google Scholar 

  35. R Vallée, P Dubois, M Coté and C Delisle,Phys. Rev. A36, 1327 (1987)

    ADS  Google Scholar 

  36. N Minorsky,J. Appl. Phys. 19, 332 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  37. J Faro and S Velasco,Physica D110, 313 (1997)

    MathSciNet  ADS  Google Scholar 

  38. U Ernst, K Pawelzik and T Geisel,Phys. Rev. Lett. 74, 1570 (1995)

    Article  ADS  Google Scholar 

  39. S R Campbell and D Wang,Physica D111, 151 (1998)

    MathSciNet  ADS  Google Scholar 

  40. R V Dodla, A Sen and G L Johnston,Commun. Nonlinear Sci. Numerical Simulation 8, 493 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  41. R Herrero, M Figueras, R Rius, F Pi and G Orriols,Phys. Rev. Lett. 84, 5312 (2000)

    Article  ADS  Google Scholar 

  42. A Takamatsu, T Fujii and I Endo,Phys. Rev. Lett. 84, 2026 (2000)

    Article  ADS  Google Scholar 

  43. M Lakshmanan and K Murali, Chaos in nonlinear oscillators — controlling and synchronization, inNonlinear Science Series A (World Scientific, 1996) vol. 13

  44. F M Atay,Phys. Rev. Lett. 91, 094101 (2003)

    Article  ADS  Google Scholar 

  45. V K Jirsa, M Dhamala and M Dingl,Phys. Rev. Lett. 92, 74104 (2004)

    Article  Google Scholar 

  46. M G Rosenblum and A S Pikovsky,Phys. Rev. Lett. 92, 114102(2004)

    Article  ADS  Google Scholar 

  47. G Kozyreff, A G Vladimirov and P Mandel,Phys. Rev. Lett. 85, 3809 (2000)

    Article  ADS  Google Scholar 

  48. S Jeong, T Ko and H Moon,Phys. Rev. Lett. 89, 154104 (2004)

    Article  ADS  Google Scholar 

  49. F M Atay, J Jost and A Wende,Phys. Rev. Lett. 92, 144101 (2004)

    Article  ADS  Google Scholar 

  50. D V Ramana Reddy, A Sen and G L Johnston,Physica D144, 335 (2000)

    ADS  Google Scholar 

  51. Y Kuramoto and D Battogtokh,Nonlinear Phenomena in Complex Systems 5, 380 (2002)

    Google Scholar 

  52. D M Abrams and S H Strogatz,Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sen, A., Dodla, R. & Johnston, G.L. Collective dynamics of delay-coupled limit cycle oscillators. Pramana - J Phys 64, 465–482 (2005). https://doi.org/10.1007/BF02706196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706196

Keywords

  • Coupled oscillators
  • time delay
  • Hopf bifurcation
  • amplitude death, synchronization, phase locking

PACS Nos

  • 05.45.+b
  • 87.10+e