Advertisement

Application of the kirkwoodbuff solution formalism and the hard sphere expansion method with the modified mean density approximation to predict solubility of solutes in supercritical fluids

  • Yong Jung Kwon
  • Joon Yong Lee
  • Ki-Chang Kim
Article

Abstract

The Kirkwood-Buff solution theory to give the relations between macroscopic thermodynamic properties and the fluctuation integrals (Gij) was utilized to predict solubility of solutes in supercritical fluids. The solvent-solute fluctuation integral (G21) in the derivation for solubility of solute is expressed in terms of the solvent-solvent fluctuation integral (G11) using the hard sphere expansion (HSE) conformal solution method with the modified mean density approximation (MMDA) where the scaling factor (R12) represents the ratio of the first peak heights of the radial distribution functions for the mixture and the reference fluid having the mean density determined from the mean density approximation (MDA). The values of R12 were evaluated by considering it as an adjustable parameter and solving the Ornstein-Zernike equation with the hypernetted chain (HNC) closure, and were compared. It is shown that solubility can be evaluated with an equation of state for pure supercritical fluid, three molecular parameters, and the scaling factor (R12) without knowledge of critical properties of solutes, which can not be measured precisely for some organic solids. This model based on the molecular theory leads to better results in solubility calculations than both the Peng-Robinson equation of state with the classical mixing rule and the previous method with the original MDA instead of the MMDA. It might be due to the superiority of the MMDA over the original MDA.

Key words

Modified Mean Density Approximation (MMDA) Solubility Supercritical Fluid Kirkwood-Buff Fluctuation Integral 

References

  1. Battle, K. D., Clifford, A. A. and Shilstone, G. F.,“Estimation of Solubilities in Supercritical Carbon Dioxide: A Correlation for the Peng-Robinson Interaction Parameters”,J. Supercrit. Fluids,5, 220 (1992).CrossRefGoogle Scholar
  2. Carnahan, N. F. and Starling, K. E.,“Equation of State for Non-attracting Rigid Spheres”,J. Chem. Phys.,51, 635 (1969).CrossRefGoogle Scholar
  3. Chen, L.-J., Ely, J. F. and Mansoori, G. A.,“Mean Density Approximation and Hard Sphere Expansion Theory: A Review”,Fluid Phase Equilibria,37, 1 (1987).CrossRefGoogle Scholar
  4. Cochran, H. D., Lee, L. L. and Pfund, D. M.,“Application of the Kirkwood-Buff Theory of Solutions to Dilute Supercritical Solutions”,Fluid Phase Equilibria,34, 219 (1987).CrossRefGoogle Scholar
  5. Cochran, H. D., Lee, L. L. and Pfund, D. M,“Structure and Properties of Supercritical Fluid Mixtures from Kirkwood-Buff Fluctuation Theory and Integral Equation Methods”, Fluctuation Theory of Mixtures, Matteoli, E. E. and Mansoori, G. A. eds., Taylor and Francis, New York, 1991.Google Scholar
  6. Ely, J. F.,“Improved Mixing Rules for One-fluid Conformai Solution Calculations”,ACS Symp. Ser.,300, 331 (1986).Google Scholar
  7. Hansen, J. P. and McDonald, I. R.,“Theory of Simple Liquids”, Academic Press, London, 1986.Google Scholar
  8. Haselow, J. S., Greenkorn, R. A. and Chao, K. C.,“Equations of State for Supercritical Extraction”,ACS Symp. Ser.,300, 156 (1986).CrossRefGoogle Scholar
  9. Hoheisel, C. and Lucas, K.,“Pair Correlation Function in Binary Mixtures from Pure Fluid Data”,Mol. Phys.,53, 51 (1984).CrossRefGoogle Scholar
  10. Huang, F. H., Li, M. H., Lee, L. L., Starling, K. E. and Chung, F. T. H.,“An Accurate Equation of State for Carbon Dioxide”,J. Chem. Eng., Japan,18, 490 (1985).Google Scholar
  11. Johnston, K. P. and Eckert, C. A.,“An Analytical Carnahan-Starling-van der Waals Model for Solubility of Hydrocarbon Solids in Supercritical Fluids”,AIChE J.,27, 773 (1981).CrossRefGoogle Scholar
  12. Johnston, K. P., Ziger, D. H. and Eckert, C. A.,“Solubilities of Hydrocarbon Solids in Supercritical Fluids-the Augmented van der Waals Treatment”,Ind. Eng. Chem. Fund.,21, 191 (1982).CrossRefGoogle Scholar
  13. Kim, H., Lin, H. M. and Chao, K. C.,“Cubic Chain of Rotators Equation of State”,Ind. Eng. Chem. Fund.,25, 75 (1986).CrossRefGoogle Scholar
  14. Kim, S. and Johnston, K. P.,“Molecular Interactions in Dilute Supercritical Fluids Solutions”,Ind. Eng. Chem. Res.,26, 1206 (1987).CrossRefGoogle Scholar
  15. Kirkwood, J. G. and Buff, F. P.,“The Statistical Mechanical Theory of Solutions: I”,J. Chem. Phys.,19, 774 (1951).CrossRefGoogle Scholar
  16. Kurnik, R. T., Holla, S. J. and Reid, R. C.,“Solubility of Solids in Supercritical Carbon Dioxide and Ethylene”,J. Chem. Eng. Data,26, 47 (1981).CrossRefGoogle Scholar
  17. Kwon, Y. J. and Leland, T. W.,“Hard Convex Body Expansion (HCBE) Conformai Solution Method for Predicting Vapor-liquid Equilibria”,Fluid Phase Equilibria,45, 69 (1989).CrossRefGoogle Scholar
  18. Kwon, Y. J. and Mansoori, G. A.,“Solubility Modeling of Solids in Supercritical Fluids Using the Kirkwood-Buff Fluctuation Integral with the Hard Sphere Expansion (HSE) Theory”,J. Supercrit. Fluids,6, 173 (1993).CrossRefGoogle Scholar
  19. Li, T. M., Chimowitz, E. H. and Munoz, F.,“First-order Corrections to Infinite Dilution Fugacity Coefficients Using Computer Simulation”,AIChE J.,41, 2300 (1995).CrossRefGoogle Scholar
  20. Mansoori, G. A. and Leland, T. W.,“Statistical Thermodynamics of Mixtures”,Trans. Faraday Soc. II,68, 320 (1972).CrossRefGoogle Scholar
  21. McHugh, M. and Paulaitis, M. E.,“Solid Solubilities of Naphthalene and Biphenyl in Supercritical Carbon Dioxide”,J. Chem. Eng. Data,25, 326 (1980).CrossRefGoogle Scholar
  22. Moshen-Nia, M., Modaress, H. and Mansoori, G. A.,“A Simple Equation of State for Hydrocarbons and Other Compounds”, Proceedings of the 1993 Annual Meeting of the Society of Petroleum Engineers, SPE Paper No. 26667. SPE, Richardson, TX (1993).Google Scholar
  23. O’Connell, J. P.,“Thermodynamic Properties of Solutions Based on Correlation Functions”,Mol. Phys.,20, 27 (1971).CrossRefGoogle Scholar
  24. O’Connell, J. P.,“Thermodynamic Properties of Solutions and the Theory of Fluctuations”,Fluid Phase Equilibria,6, 21 (1981).CrossRefGoogle Scholar
  25. Peng, D.-Y. and Robinson, D. B.,“A New Two Constant Equation of State”,Ind. Eng. Chem. Fund.,15, 59 (1976).CrossRefGoogle Scholar
  26. Pfund, D. M., Lee, L. L. and Cochran, H. D.,“Application of the Kirkwood-Buff Theory of Solutions to Dilute Supercritical Solutions II. The Excluded Volume and Local Composition Models”,Fluid Phase Equilibria,39, 161 (1988).CrossRefGoogle Scholar
  27. Reid, R. C., Prausnitz, J. M. and Poling, B. E.,“The Properties of Gases and Liquids”-, 4th ed., McGraw-Hill, New York, 1987.Google Scholar
  28. Schmitt, W. J. and Reid, R. C.,“Solubility of Monofunctional Organic Solids in Chemically Diverse Supercritical Fluids”,J. Chem. Eng. Data,31, 204 (1986).CrossRefGoogle Scholar
  29. Tan, R. K. Z.,“A Study of the Pair Distribution Functions of Mixtures of Idealized Molecules Using Molecular Simulation” , Ph.D. dissertation, Rice University (1987).Google Scholar
  30. Tanaka, H. and Nakanishi, K.,“Solubility in Supercritical Fluid Mixtures with Co-solvents: An Integral Equation Approach”,Fluid Phase Equilibria,102, 107 (1994).CrossRefGoogle Scholar
  31. Tsekhanskaya, Y. V., Iomtev, M. B. and Mushkina, E. V.,“Solubility of Naphthalene in Ethylene and Carbon Dioxide under Pressure”,Russ. J. Phys. Chem.,38, 1173 (1964).Google Scholar
  32. Van Leer, R. A. and Paulaitis, M. E.,“Solubilities of Phenol and Chlorinated Phenols in Supercritical Carbon Dioxide”,J. Chem. Eng. Data,25, 257 (1980).CrossRefGoogle Scholar
  33. Weast, R. C.,“Handbook of Chemistry and Physics”, 65th ed., CRC Press, Boca Raton, 1984.Google Scholar

Copyright information

© Korean Institute of Chemical Engineering 1997

Authors and Affiliations

  • Yong Jung Kwon
    • 1
  • Joon Yong Lee
    • 1
  • Ki-Chang Kim
    • 1
  1. 1.Department of Chemical EngineeringKangwon National UniversityChunchonKorea

Personalised recommendations