Korean Journal of Chemical Engineering

, Volume 23, Issue 5, pp 736–740 | Cite as

Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data

  • Fatih Sevim
  • Fatih Demir
  • Murat Bilen
  • Hüseyin Okur
Article

Abstract

The kinetic parameters of the thermal decomposition of boric acid have been investigated by using TGA data. Suzuki and Coats-Redfern methods have been applied for the kinetic investigation. It was determined that decomposition kinetics of boric acid occurred in two steps and both regions suitably fit a first-order kinetic model. According to Coats-Redfern method, the activation energy and frequency factor were found as 79.85 kJ·mol-1 and 3.82x 104 min-1 for region I and 4.79 kJ·mol-1 and 4.045 x 10-5 min-1 for region II, respectively. The activation energies and frequency factors were found as 4.45 kJ·mol-1 and 4.08 x108 min-1 for the Suzuki method.

Key words

Boric Acid Thermal Decomposition Suzuki Method Coats-Redfern Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coats, A. W. and Redfern, J. P.,“Kinetic parameters from thermogravimetric data,”Nature,201, 68 (1964).CrossRefGoogle Scholar
  2. Demir, F., Dönmez, B., Okur, H. and Sevim, E., “Calcination kinetic of magnesite from thermogravimetric data,”Trans IChemE,81, 918 (2003).CrossRefGoogle Scholar
  3. Ersahan, H., Ekmekyapar, A. and Sevim, F., “Flash calcination of magnesite ore in a free-fall reactor and leaching of magnesia,”Int. J. Miner. Process,42, 121(1994).CrossRefGoogle Scholar
  4. KocakuŞak, S., AkÇay, K., Ayok, T., Köroğlu, J., SavaŞÇ, T. and ve Tolun, R.,“AkiŞkan yatakta bor,” Tübitak AraŞtirma Merkezi, Rapor No:KM323 (1998).Google Scholar
  5. Kraschwit, J. I. (Ed.),Kirk-othmer enyclopedia of chemical technology, John Wiley and Sons, New York, 22 (1997).Google Scholar
  6. Marano, R. T. and Shuster, E. R.,Inorganic materials and physical chemistry, R. F. Schuwenber and P. D. Garn (Eds.), Academic Press, New York, 709 (1969).Google Scholar
  7. Okur, H. and Eymir, Ç.,“Dehydration kinetics of ulexite by thermogravimetric data using the coats-redfern and genetic algorithm method,”Ind. Eng. Chem. Res.,42, 3642 (2003).CrossRefGoogle Scholar
  8. Olszak-Humienik, M. and Mozejko, J.,“Kinetics of thermal decomposition of dolomite,”Journal of Thermal Analysis and Calorimetry,56, 829 (1999).CrossRefGoogle Scholar
  9. Park, J. W., Oh, S. C., Lee, H. P., Kim, H. T. and Yoo, K. O.,“Kinetic analysis of thermal decomposition of polymer using a dynamic model,”Korean J. Chem. Eng.,17, 489 (2000).CrossRefGoogle Scholar
  10. PiŞkin, S., PhD Thesis, İstanbul Technical University, Metallurgy Dept. İstanbul, Turkey, 22 (1983).Google Scholar
  11. Suzuki, M., Misic, D. M., Koyama, O. and Kawazoe, K.,“Study of thermal regeneration of spent activated carbons: thermogravimetric measurement of various single component organics loaded on activated carbons,”Chem. Eng. Sci,33, 271 (1978).CrossRefGoogle Scholar
  12. ŞÇener, S., özbayoğlu, G. and Demirci, Ş.,“Changes in the structure of ulexite on heating,”Thermochimica Acta,362, 107 (2000).CrossRefGoogle Scholar
  13. The Economics of Boron, Roskill Information Service Ltd. (1995).Google Scholar
  14. Yun, Y. and Lee, G.,“Effects of pressure in coal pyrolysis observed by high pressure TGA,”Korean J. Chem. Eng.,16, 798 (1999).CrossRefGoogle Scholar
  15. Zachariasen, W. H.,“The crystal structure of cubic metaboric acid,”Acta Crystallogr.,16, 380 (1963).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2006

Authors and Affiliations

  • Fatih Sevim
    • 1
  • Fatih Demir
    • 1
  • Murat Bilen
    • 1
    • 2
  • Hüseyin Okur
    • 1
  1. 1.Department of Chemical Engineering, Engineering FacultyAtatürk UniversityErzurumTurkey
  2. 2.Eti Holding A., Research and Development Dept.İstanbul Yolu üzeriAnkaraTurkey

Personalised recommendations