Skip to main content
Log in

Effect of fluorine chemistry in the remote plasma enhanced chemical vapor deposition of silicon films from Si2H6-SiF4-H2

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

SiF4 was added into Si2H6-H2 to deposit polycrystalline silicon films at low temperatures around 400°C in a remote plasma enhanced chemical vapor deposition reactor. It was found out that the fluorine chemistry obtained from SiF4 addition had an influence on the chemical composition, crystallinity, and silicon dangling bond density of the film. The fluorine chemistry reduced the amount of hydrogen and oxygen incorporated into the film and also suppressed the formation of powders in the gas phase, which helped the crystallization at low temperatures. Effect of SiF4 concentration as well as the deposition temperature was also significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellamy, L. J., The Infrared Spectra of Complex Molecules (Chapman and Hall, London, (1975), Vol. 1, 3rd ed., p. 380.

    Google Scholar 

  • Fang, C.J., Ley, L., Shanks, H.R., Gruntz, K.J. and Cardona, M., “Bonding of Fluorine in Amorphous Hydrogenated Silicon”,Phys. Rev.,B22, 6140 (1980).

    Google Scholar 

  • Hanna, J., Kamo, A., Komiya, T., Shimizu, I. and Kokado, H., “Preparation of Si Thin Films by Spontaneous Chemical Deposition”,J. Non-cryst. Solids,114, 172 (1989).

    Article  CAS  Google Scholar 

  • Johnson, N.M., Ready, S.E., Boyce, J.B., Donald, C.D., Wolff, S. H. and Walker, “Hydrogen Incorporation in Undoped Microcrystalline Silicon”,J. Appl. Phys. Lett.,53(17), 1626(1988).

    Article  CAS  Google Scholar 

  • Kim, S. C., Jung, M. H. and Jang, “Growth of Microcrystal Silicon by Remote Plasma Chemical Vapor Deposition”,J. Appl. Phys. Lett.,58(3), 281 (1991).

    Article  CAS  Google Scholar 

  • Langford, A. A., Fleet, M. L., Nelson, B. P., Lanford, W. A. and Maley, N., “Infrared Absorption Strength and Hydrogen Content of Hydrogenated Amorphous Silicon”,Phys. Rev.,B45, 13 367 (1992).

    Google Scholar 

  • Lee, K. Y., Chung, C.-W., Han, J. H., Rhee, S. and Moon, S. H., “Thermodynamic Evaluation of Equilibrium Compositions in the Si-H-F System”,J. Eledrochem. Soc.,139, 3539(1992).

    Article  CAS  Google Scholar 

  • Nagamine, K., Yamada, A., Konagai, M. and Takahashi, M., “Epitaxial Growth of Silicon by Plasma Chemical Vapor Deposition at a Very Low Tempearure of 250‡C”,Jpn. J. Appl. Phys.,26, L951 (1986).

    Article  Google Scholar 

  • Nagahara, T., Fujimoto, K., Kohno, N., Kashiwagi, Y. and Kakinoki, H., “In situ Chemically Cleaning Poly-Si Growth at Low Temperature”,Jpn. J. Appl. Phys.,31, 4555 (1992).

    Article  CAS  Google Scholar 

  • Nakayama, Y., Takuma, Y., Akiyama, K., Otsuchi, T. and Kawamura, T., “Deposition Mechanism of a-Si: H Film in Disilane-Hydrogen Plasma”,Jpn. J. Appl. Phys.,23(7), L470 (1984).

    Article  Google Scholar 

  • Nishida, S., Shiimoto, T., Yamada, A., Karasawa, S., Konagai, M. and Takahashi, K., “Epitaxial Growth of Silicon by Photochemical Vapor Deposition at a very Low Temperature of 200‡C”,Appl. Phys. Lett.,49, 79(1986).

    Article  CAS  Google Scholar 

  • Okada, Y., Chen, J., Campbell, I. H., Fauchet, P. M. and Wagner, S., “Mechanism of Microcrystalline Silicon Growth from Silicon Tetrafluoride and Hydrogen”,J. Non-Cryst. Solids,114, 816 (1989).

    Article  CAS  Google Scholar 

  • Shimada, T., Katayama, Y. and Horigome, S., “Infrared Spectra of Amorphous Silicon-Fluorine Alloys Prepared by Sputtering in Fluorosilane-Argon Gas Mixture”,Jpn. J. Appl. Phys.,19, L265 (1980).

    Article  CAS  Google Scholar 

  • Thompson, H. W., “Si-H Vibration Frequency and Inductive Effects”,Spedrochim. Acta,16, 238(1960).

    Article  CAS  Google Scholar 

  • Toyoshima, Y., Arai, K., Matsuda, A. and Tanaka, K., “Real Timein situ Observation of the Film Growth of Hydrogenated Amorphous Silicon by Infrared Reflection Absorption Spectroscopy”,Appl. Phys. Lett.,56(16), 1540(1990).

    Article  CAS  Google Scholar 

  • Toyoshima, Y., Arai, K., Matsuda, A. and Tanaka, K., “Real Time Detection of Higher Hydrides on the Growing Surface of Hydrogenated Amorphous Silicon by Infrared Reflection Absorption Spectroscopy”,Appl. Phys. Lett.,57(10), 1028 (1990).

    Article  CAS  Google Scholar 

  • Wadayama, T., Kayama, H., Hatta, A., Suetaka, W. and Hanna, “In situ IR Spectroscopic Observation of a-Si: H(F) Films Growing under Spontaneous Chemical Deposition Method”,J., Jpn. J. Appl. Phys.,29, 1884 (1990).

    Article  CAS  Google Scholar 

  • Yamada, A., Jia, Y., Konagai, M. and Takahashi, K., “Heavily Pdoped (>10-21 cm-3) Silicon Films Grown by Photochemical Vapor Deposition at a very Low Temperature of 250‡C”,Jpn. J. Appl. Phys.,28, L2284 (1989).

    Article  CAS  Google Scholar 

  • Zanzucchi, P.J., Semiconductors and Semimetals, ed., Pankove, J. (Academic Press, New York), Vol. 21B, p. 113 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DH., Lee, IJ., Rhee, SW. et al. Effect of fluorine chemistry in the remote plasma enhanced chemical vapor deposition of silicon films from Si2H6-SiF4-H2 . Korean J. Chem. Eng. 12, 572–575 (1995). https://doi.org/10.1007/BF02705862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705862

Key words

Navigation