Skip to main content
Log in

Gas permeation properties in a composite mesoporous alumina ceramic membrane

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, the effect of different chemical interactions on the gas permeation properties were investigated in the composite mesoporous ceramic membrane prepared with γ-alumina on the surface of a macroporous ceramic membrane. In the permeation results, the gas permeance of the strongly adsorbing gas species increased in the mesoporous ceramic membranes. It is considered that the permeation of the adsorbing gas species increased through preferential adsorption on the membrane pore surface. It was shown in this study that the modified mesoporous ceramic membrane could increase the permeation performance in the presence of the adsorbing gas species due to the surface diffusion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhide, B. D. and Stern, S. A.,“Membrane Processes for the Removal of Acid Gases from Natural Gas. I. Process Configurations and Optimization of Operating Conditions,”J. Membr. Sci., 81, 209 (1993).

    Article  CAS  Google Scholar 

  • Burggraaf, A. J. and Cot, L.,Fundamentals of Inorganic Membrane Science and Technology, Elsevier, Amsterdam (1996).

    Google Scholar 

  • Choi, J. G., Do, D. D. and Do, H. D.,“Surface Diffusion of Adsorbed Molecules in Porous Media: Monolayer, Multilayer, and Capillary Condensation Regimes,”Ind. Eng. Chem. Res., 40, 4005 (2001).

    Article  CAS  Google Scholar 

  • Cooper, C. A. and Lin, Y. S.,“Microstructural and Gas Separation Properties of CVD Modified Mesoporous γ-Alumina Membranes,”J. Membr. Sci.,195, 35 (2002).

    Article  CAS  Google Scholar 

  • Fuertes, A. B. and Menendez, I.,“Separation of Hydrocarbon Gas Mixtures Using Phenolic Resin-based Carbon Membranes,”Sep. Purif. Tech.,28, 29 (2002).

    Article  CAS  Google Scholar 

  • Fuertes, A. B.,“Adsorption-selective Carbon Membrane for Gas Separation,”J. Membr. Sci.,177, 9 (2000).

    Article  CAS  Google Scholar 

  • Gallaher, G K. and Liu, P. K. T.,“Characterization of Ceramic Membranes I. Thermal and Hydrothermal Stabilities of Commercial 40 å Membranes,”J. Membr. Sci., 92, 29 (1994).

    Article  CAS  Google Scholar 

  • Geiszler, V. C. and Koros, W. J.,“Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties,”Ind. Eng. Chem. Res.,35, 2999 (1996).

    Article  CAS  Google Scholar 

  • Hamad, F. A., Chowdhury, G. and Matsuura, T.,“Sulfonated Polyphenylene Oxide-Polyethersulfone Thin-film Composite Membranes: Effect of Counterions on the Gas Transport Properties,”J. Membr. Sci., 191, 71(2001).

    Article  CAS  Google Scholar 

  • Hasegawa, Y., Tanaka, T. and Watanabe, K.,“Separation of CO2-CH4 and CO2-N2 System Using Ion-exchange FAU-Zeolite Membrane with Different Si/Al Ratios,”Korean J. Chem. Eng.,19, 309 (2002).

    Article  CAS  Google Scholar 

  • Hsieh, H. P.,Inorganic Membranes for Separation and Reaction, Elsevier, Amsterdam (1996).

    Google Scholar 

  • Jung, K. Y., So, J. H., Park, S. B. and Yang, S. M.,“Hydrogen Separation from the H2/N2 Mixture by Using a Single and Multi-stage Inorganic Membrane,”Korean J. Chem. Eng., 16, 193 (1999).

    Article  CAS  Google Scholar 

  • Kim, S. S. and Sea, B. K.,“Gas Permeation Characteristics of Silica/ alumina Composite Membrane Prepared by Chemical Vapor Deposition,”Korean J. Chem. Eng.,18, 322 (2001).

    Article  CAS  Google Scholar 

  • Kim, Y S., Kusakabe, K., Morooka, S. and Yang, S. M.,“Preparation of Microporous Silica Membranes for Gas Separation,”Korean J. Chem. Eng.,18, 106 (2001).

    Article  CAS  Google Scholar 

  • Koros, W. J. and Flemming, G K.,“Membrane-based Gas Separation-Review,”J. Membr. Sci., 83, 1 (1993).

    Article  CAS  Google Scholar 

  • Koros, W. J. and Mahajan. R.,“Pushing the Limits on Possibilities for Large Scale Gas Separation: Which Strategies?”J. Membr. Sci.,175, 181 (2000).

    Article  CAS  Google Scholar 

  • Lee, D. and Oyama, S. T.,“Gas Permeation Characteristics of a Hydrogen Selective Supported Silica Membrane,”J. Membr. Sci., 210, 291 (2002).

    Article  CAS  Google Scholar 

  • Lee, K. H. and Hwang, S. T.,“The Transport of Condensable Vapors through a Microporous Vycor Glass Membrane,”J.Colloid Interf. Sci.,110, 544 (1986).

    Article  CAS  Google Scholar 

  • Lin, Y S.,“Microporous and Dense Inorganic Membranes: Current Status and Prospective,”Sep. Purif. Tech.,25, 39 (2001).

    Article  CAS  Google Scholar 

  • Menendez, I. and Fuertes, A. B.,“Aging of Carbon Membranes Under Different Environments,”Carbon, 39, 733 (2001).

    Article  CAS  Google Scholar 

  • Moon, J. H., Ahn, H., Hyun, S. H. and Lee, C. H.,“Separation Characteristics of Tetrapropylammoniumbromide Templating Silica/alumina Composite Membrane in CO2/N2, CO2/H2 and CH4/H2 Systems,”Korean J. Chem. Eng., 21, 477 (2004).

    Article  CAS  Google Scholar 

  • Nagamine, S., Endo, A., Nakaiwa, M., Nakane, T., Kurumada, K. I. and Tanigaki, M.,“Synthesis of Submillimeter-thick Films of Surfactant Templated Mesoporous Silica,”Micropor. Mesopor. Mat.,43, 181 (2001).

    Article  CAS  Google Scholar 

  • Pan, M., Cooper, C. A., Lin, Y S. and Meng, G.Y.,“CVD Modification and Vapor/gas Separation Properties of Nanoporous Alumina Membranes,”J. Membr. Sci., 158, 235 (1999).

    Article  CAS  Google Scholar 

  • Rao, M. B. and Sircar, S.,“Performance and Pore Characterization of Nanoporous Carbon Membranes for Gas Separation,”J. Membr. Sci., 110, 109 (1996).

    Article  CAS  Google Scholar 

  • Rautenbach, R. and Welsch, K.,“Treatment of Landfill Gas by Gas Permeation-Pilot Plant Results and Comparison to Alternatives,”J. Membr. Sci., 87, 107 (1994).

    Article  CAS  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Mosocou, L., Pirtotti, R. A., Rouqurol, J. and Siemieniewska, T.,“Reporting Physisorption Data for Gas/solid Systems,”Pure & Appl. Chem.,57, 603 (1985).

    CAS  Google Scholar 

  • Spillman, R.W.,“Economics of Gas Separation Membranes,”Chem. Eng. Prog.,85, 41 (1989).

    CAS  Google Scholar 

  • Suda, H. and Haraya, K.,“Carbon Molecular Sieve Membranes: Preparation, Characterization, and Gas Permeation Properties,”ACS Symp. Ser.,744, 295 (2000).

    Article  CAS  Google Scholar 

  • Uchytil, P., Petrickovic, R., Thomas, S. and Seidel-Morgenstern, A.,“Influence of Capillary Condensation Effects on Mass Transport through Porous Membranes,”Sep. Purif. Tech., 33, 273 (2003).

    Article  CAS  Google Scholar 

  • Uhlhorn, R J. R., Keizer, K. and Burggraaf, A. J.,“Gas Transport and Separation with Ceramic Membranes. Part I. Multilayer Diffusion and Capillary Condensation,”J. Membr. Sci., 66, 259 (1992).

    Article  CAS  Google Scholar 

  • Wang, K., Suda, H. and Haraya, K.,“The Characterization of CO2 Permeation in a CMSM Derived from Polyimide,”Sep. Purif. Tech.,31, 61 (2003).

    Article  CAS  Google Scholar 

  • White, L. S., Blinka, T. A., Kloczewski, H. A. and Wang, I.,“Properties of a Polyimide Gas Separation Membrane in Natural Gas Streams,”J. Membr. Sci., 103, 73 (1995).

    Article  CAS  Google Scholar 

  • Yoshioka, T., Tanaka, J., Furutani, S., Tsuru, T. and Asaeda, M.,“Transport Properties of Condensable Gases through Microporous Silica Membranes,”Trans. Mat. Res. Soc. Japan,29, 3247 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Joo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HJ., Suda, H. & Haraya, K. Gas permeation properties in a composite mesoporous alumina ceramic membrane. Korean J. Chem. Eng. 22, 721–728 (2005). https://doi.org/10.1007/BF02705789

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705789

Key words

Navigation