Skip to main content

Application of Taguchi method in the optimization of dissolution of ulexite in NH4Cl Solutions

Abstract

The Taguchi method was used to determine optimum conditions for the dissolution of ulexite in NH4Cl solutions. The ranges of experimental parameters were between 50–87 ‡C for reaction temperature, 0.05-0.20 gmL-1 for solid-to-liquid ratio, 1–4 M for NH4Cl concentration, 5–25 min for reaction time, and (-850+600)-(-90) Μm for particle size. The optimum conditions for these parameters were found to be 87 ‡C, 0.05 gmL-1, 4M, (-300+212) Μm, and 18 minutes, respectively. Under these conditions, the dissolution percentage of ulexite in NH4Cl solution was 98.37. Reaction products were found to be boric acid, ammonium tetraborates, sodium tetraborate decahydrate, calcium chloride, and sodium chloride.

This is a preview of subscription content, access via your institution.

References

  • Çopur, M., “An optimization study of dissolution of Zn and Cu in ZnS concentrate with HNO3 solutions,”Chem. Biochem. Eng. Q,15 (4), 191 (2002).

    Google Scholar 

  • Garret, D. E.,Borates, Academic Press Limited, USA (1998).

    Google Scholar 

  • Gülensoy, H.,Kompleksometrinin esaslarý ve kompleksometrik titrasyonlar, Istanbul Univ. Yay InlarI, Istanbul, Turkey, pp 250 (1984).

    Google Scholar 

  • Gülensoy, H. and Kocakerim, M. M., “Solubility of ulexite mineral in CO2-containing water and geological formation of this mineral,”Bulletin of Mineral Research and Exploration Institute of Turkey,90, 19 (1978).

    Google Scholar 

  • Imamutdinova, V. M., “Rates of dissolution of native borates in H3PO4 solutions,”Zh. Prikl. Khim.,40, 2596 (1967).

    CAS  Google Scholar 

  • Imamutdinova, V. M. and Abdrashidova, N., “Rates of dissolution of borates in CH3COOH solution,”Zh. Prikl. Khim.,43 (2), 452 (1970).

    CAS  Google Scholar 

  • Imamutdinova, V. M. and Vladykina, A. N., “Rate of decomposition of native borates in perchloric acid solutions,”Zh. Prikl, Khim.,42 (2), 1172 (1969).

    CAS  Google Scholar 

  • Kocakerim, M. M. and Alkan, M., “Dissolution kinetics of colemanite in SO2-saturated water,”Hydrometallurgy,19, 385 (1988).

    Article  CAS  Google Scholar 

  • Kocakerim, M. M., Çolak, S., Davies, T. and Alkan, M., “Dissolution kinetics of ulexite in CO2-saturated water,”Canadian Met. Quarterly,32(4), 393 (1993).

    CAS  Google Scholar 

  • KüÇük, ö., Kocakerim, M. M., Çopur, M. and YartaI, A., “Optimization of dissolution of ulexite in (NH4)2SO4 solution,”Canadian Met. Quarterly,44(1), 53 (2005).

    Google Scholar 

  • KüÇük, ö., Kocakerim, M. M., YartaI, A. and Çopur, M., “Dissolution of Kestelek’s colemanite containing clay minerals in water saturated with sulphur dioxide,”Ind. Eng. Chem. Res.,41, 2853 (2002).

    Article  Google Scholar 

  • Kum, C., Alkan, M. and Kocakerim, M. M., “Dissolution kinetics of calcined colemanite in ammonium chloride solution,”Hydrometallurgy,36, 359 (1994).

    Article  Google Scholar 

  • Künkül, A., YapIcI, S., Kocakerim, M. M. and Çopur, M., “Dissolution kinetics of ulexite in ammonia solutions saturated with CO2”,Hydrometallurgy,44, 135 (1997).

    Article  Google Scholar 

  • özmetin, C., Kocakerim, M. M., YapIcI, S. and YartaI, A., “A semi-empirical kinetic model for dissolution of colemanite in aqueous CH3COOH solution,”Ind. Eng. Chem. Res.,35, 2355 (1996).

    Article  Google Scholar 

  • Phadke, M. S.,Quality engineering using robust design, Prentice Hall, New Jersey, 61–292 (1989).

    Google Scholar 

  • Phadke, M. S., Kackar, R. N., Speeney, D. D. and Grieco, M. J., “Off-line quality control in integrated circuit fabrication using experimental design,”The Bell System Tech. J.,62, 1273 (1983).

    Google Scholar 

  • Taguchi, G.,System of experimental design. Quality resources, New York, 108 (1987).

  • Tekin, G., Onganer, Y. and Alkan, M., “Dissolution kinetics of ulexite in ammonium chloride solution,”Canadian Met. Quarterly,37, 91 (1998).

    Article  CAS  Google Scholar 

  • TunÇ, M., Kocakerim, M. M. and YapIcI, S., “Dissolution mechanism of ulexite in H2SO4 solution,”Hydrometallurgy,51, 359 (1999).

    Article  Google Scholar 

  • YapIcI, S., Kocakerim, M. M. and Künkül, A., “Optimization of production of H3BO3 from ulexite,”Tr. J. Eng. Environ. Sci.,18, 91 (1990).

    Google Scholar 

  • Yeilyurt, M., “Determination of the optimum conditions for the boric acid extraction from colemanite ore in HNO3 solutions,”Chem. Eng. Process,43, 1189(2004).

    Article  Google Scholar 

  • ZareNezhad, B., “Experimental and theoretical investigation of boric acid production through reactive dissolution of oxalic acid crystals in borax aqueous solution,”KoreanJ. Chem. Eng.,20, 44 (2003).

    Article  CAS  Google Scholar 

  • ZareNezhad, B., “Direct production of crystalline boric acid through heterogeneous reaction of solid borax with propionic acid: operation and simulation,”Korean J. Chem. Eng.,21, 956 (2004).

    Article  CAS  Google Scholar 

  • Zdanovskii, A. B. and Biktagirova, L. G., “Mechanism of decomposition of calcium borates in H3PO4 solutions,”Zh. Prikl. Khim.,40, 2559 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to özkan KüÇük.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

KüÇük, ö. Application of Taguchi method in the optimization of dissolution of ulexite in NH4Cl Solutions. Korean J. Chem. Eng. 23, 21–27 (2006). https://doi.org/10.1007/BF02705687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705687

Key words

  • NH4Cl
  • Ulexite
  • Dissolution
  • Optimization
  • Taguchi Method