Skip to main content
Log in

Field theoretic calculation of energy cascade rates in non-helical magnetohydrodynamic turbulence

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Energy cascade rates and Kolmogorov’s constant for non-helical steady magnetohydrodynamic turbulence have been calculated by solving the flux equations to the first order in perturbation. For zero cross helicity and space dimensiond = 3, magnetic energy cascades from large length-scales to small length-scales (forward cascade). In addition, there are energy fluxes from large-scale magnetic field to small-scale velocity field, large-scale velocity field to small-scale magnetic field, and large-scale velocity field to large-scale magnetic field. Kolmogorov’s constant for magnetohydrodynamics is approximately equal to that for fluid turbulence (≈ 1.6) for Alfvén ratio 05 ≤r A ≤ ∞. For higher space-dimensions, the energy fluxes are qualitatively similar, and Kolmogorov’s constant varies asd 1/3. For the normalized cross helicity σc →1, the cascade rates are proportional to (1 − σc)/(1 + σc , and the Kolmogorov’s constants vary significantly with σcc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R H Kraichnan,Phys. Fluids 8, 1385 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  2. P S Iroshnikov,Sov. Astron. I. 7, 566 (1964)

    ADS  MathSciNet  Google Scholar 

  3. E Marsch, inReviews in modern astronomy edited by G Klare (Springer-Verlag, Berlin, 1990) p. 43

    Google Scholar 

  4. W H Matthaeus and Y Zhou,Phys. Fluids B1, 1929 (1989)

    ADS  Google Scholar 

  5. Y Zhou and W H Matthaeus,J. Geophys. Res. 95, 10291 (1990)

    ADS  Google Scholar 

  6. M K Vermaet al, J. Geophys. Res. 101, 21619 (1996)

    Article  ADS  Google Scholar 

  7. P Frick and D Sokoloff,Phys. Rev. E57, 4155 (1998)

    ADS  MathSciNet  Google Scholar 

  8. W C Müller and D Biskamp,Phys. Rev. Lett. 84, 475 (2000)

    Article  ADS  Google Scholar 

  9. D Biskamp and W C Müller,Phys. Plasma 7, 4889 (2000)

    Article  ADS  Google Scholar 

  10. M K Verma,Phys. Plasma 6, 1455 (1999)

    Article  ADS  Google Scholar 

  11. S Sridhar and P Goldreich,Astrophys. J. 432, 612 (1994)

    Article  ADS  Google Scholar 

  12. P Goldreich and S Sridhar,Astrophys. J. 438, 763 (1995)

    Article  ADS  Google Scholar 

  13. M K Verma,Phys. Rev. E64, 26305 (2001)

    ADS  Google Scholar 

  14. M K Verma,Phys. Plasma 8, 3945 (2001)

    Article  ADS  Google Scholar 

  15. M Hnatich, J Honkonen and M Jurcisin, nlin.CD/0106043 (2001)

  16. A Pouquet, U Frisch and J Léorat,J. Fluid Mech. 77, 321 (1976)

    Article  MATH  ADS  Google Scholar 

  17. A Pouquet and G S Patterson,J. Fluid Mech. 85, 305 (1978)

    Article  MATH  ADS  Google Scholar 

  18. M K Verma,Pramana — J. Phys. (submitted); nlin.CD/0107069 (2002)

  19. G Dar, M K Verma and V Eswaran,Physica D157, 207 (2001)

    ADS  Google Scholar 

  20. A Ishizawa and Y Hattori,J. Phys. Soc. Jpn. 67, 441 (1998)

    Article  MATH  ADS  Google Scholar 

  21. J Cho and E T Vishniac,Astrophys. J. 538, 217 (2000)

    Article  ADS  Google Scholar 

  22. M M Stanisić,Mathematic theory of turbulence (Springer-Verlag, New York, 1988)

    Google Scholar 

  23. D C Leslie,Development in the theory of turbulence (Clarendon, Oxford University Press, 1973)

    Google Scholar 

  24. J D Fournier and U Frisch,Phys. Rev. A17, 747 (1979)

    ADS  MathSciNet  Google Scholar 

  25. M K Verma, D A Roberts and M L Goldstein,J. Geophys. Res. 100, 19839 (1995)

    Article  ADS  Google Scholar 

  26. C-Y Tu,J. Geophys. Res. 93, 7 (1988)

    ADS  Google Scholar 

  27. M K Verma,Int. J. Mod. Phys. B (submitted); nlin.CD/0103033 (2001)

  28. G Dar, Ph.D. thesis, IIT Kanpur, 2000

    Google Scholar 

  29. W H Matthaeus and M L Goldstein,J. Geophys. Res. 87, 6011 (1982)

    ADS  Google Scholar 

  30. E Marsch and C-Y Tu,J. Geophys. Res. 95, 8211 (1990)

    Article  ADS  Google Scholar 

  31. M K Verma and J K Bhattacharjee,Europhys. Lett. 31, 195 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M.K. Field theoretic calculation of energy cascade rates in non-helical magnetohydrodynamic turbulence. Pramana - J Phys 61, 577–594 (2003). https://doi.org/10.1007/BF02705480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705480

Keywords

PACS Nos

Navigation