Skip to main content
Log in

Prediction of PVT behavior of polymer melts by the group-contribution lattice-fluid equation of state

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The group-contribution lattice-fluid equation of state (GCLF-EOS), which is capable of predicting equilibrium behavior in polymer systems, was developed by establishing group contributions of the lattice-fluid EOS using the PVT properties of low molecular weight compounds only. This model was used to predict the PVT behavior of common polymers over a wide temperature range in the melt region and over a wide range of pressures up to about 2,000 bar. The GCLF-EOS predicted accurately the effect of pressure and temperature on the specific volumes of the polymer melts. Prediction results by the GCLF-EOS were compared with those by the group-contribution volume (GCVOL) method. The GCLF-EOS requires only the structure of the polymer repeat unit in terms of their functional groups as input information. No other polymer properties are needed. The GCLF-EOS is the only model that is capable of predicting the specific volumes of polymer melts as a function of temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, J. W., “Measurement of the PVT Behaviour of cis-1,4-Polybutadiene”,Polym. Eng. Sci,18, 238 (1978).

    Article  CAS  Google Scholar 

  • Beret, S. and Prausnitz, J. M., “Densities of Liquid Polymers at High Pressure. Pressure-Volume-Temperature Measurements for Polyethylene, Polyisobutylene, Poly(vinyl acetate), and Poly(dimethylsiloxane) to 1 kbar”,Macromolecules,8, 536 (1975).

    Article  Google Scholar 

  • Danner, R. P. and High, M. S., “Handbook of Polymer Solution Thermodynamics”, Design Institute for Physical Property Data, American Institute of Chemical Engineers, New York, 1993.

    Google Scholar 

  • Daubert, T. E. and Danner, R. P., “Physical and Thermodynamic Properties of Pure Compounds: Data Compilation”, Taylor and Francis, New York, extent 1994.

    Google Scholar 

  • Elbro, H. S., Fredenslund, Aa. and Rasmussen, P., “A Group Contribution Method for the Prediction of Liquid Densities as a Function of Temperature for Solvents, Oligomers, and Polymers”,Ind. Eng. Chem. Res.,30, 2576 (1991).

    Article  CAS  Google Scholar 

  • Fedors, R. F., “A Method for Estimating Both the Solubility Parameter and Molar Volumes of Liquids”,Polym. Eng. Sci,14, 147 (1974).

    Article  CAS  Google Scholar 

  • Flory, P. J., Oriji, R. A. and Vrij, A., “Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons”,J. Am. Chem. Soc.,86, 3507 (1964).

    Article  CAS  Google Scholar 

  • Fredenslund, Aa., Gmehling, J. and Rasmussen, P., “Vapor-Liquid Equilibria Using UNIFAC., Elsevier Scientific Publishing, New York, 1977.

    Google Scholar 

  • Guggenheim, E. A., “Mixtures”, Clarendon Press, Oxford, 1952.

    Google Scholar 

  • Hellwege, V. K. H., Knappe, W. and Lehmann, P., “Die isotherme Kompressibilitat einiger amorpher und teilkristalliner Hochpolymerer im Temperaturbereich von 20-250°C und bei Drucken bis zu 2,000 kg/cm2”,Kolloid-Z. Z. Polym.,183, 110 (1962).

    Article  CAS  Google Scholar 

  • Lee, B.-C. and Danner, R. P., “Application of the Group-Contribution Lattice-Fluid Equation of State to Random Copolymer-Solvent Systems”,Fluid Phase Equilibria,117, 33 (1996b).

    Article  CAS  Google Scholar 

  • Lee, B.-C. and Danner, R. P., “Prediction of Polymer-Solvent Phase Equilibria by a Modified Group-Contribution EOS”,AIChE J.,42, 837 (1996a).

    Article  CAS  Google Scholar 

  • Lee, B.-C., “Prediction of Phase Equilibria in Polymer Solutions”, Ph.D. Dissertation, The Pennsylvania State University, University Park, PA, 1995.

    Google Scholar 

  • Lichtenthaler, R. N., Liu, D. D. and Prausnitz, J. M., “Specific Volumes of Dimethylsiloxane Polymers to 900 bars”,Macromolecules,11, 192 (1978).

    Article  CAS  Google Scholar 

  • Nanda, V. S. and Simha, R., “Equation of State of Polymer Liquids and Glasses at Elevated Pressures”,J. Chem Phys.,41, 3870 (1964).

    Article  CAS  Google Scholar 

  • Olabisi, O. and Simha, R., “Pressure-Volume-Temperature Studies of Amorphous and Crystallizable Polymers. I. Experimental”,Macromolecules,8, 206 (1975).

    Article  CAS  Google Scholar 

  • Panayiotou, C. and Vera, J. H., “An Improved Lattice-Fluid Equation of State for Pure Component Polymeric Fluids”,Polym. Eng. Sci.,22, 345 (1982a).

    Article  CAS  Google Scholar 

  • Panayiotou, C. and Vera, J. H., “Statistical Thermodynamics of r-Mer Fluids and Their Mixtures”,Polym. J.,14, 681 (1982b).

    Article  CAS  Google Scholar 

  • Rackett, H. G., “Equation of State for Saturated Liquids”,J. Chem. Eng. Data,15, 514 (1970).

    Article  CAS  Google Scholar 

  • Sanchez, I. C. and Lacombe, R. H., “An Elementary Molecular Theory of Classical Fluids: Pure Fluids”,J. Phys. Chem.,80, 2352 (1976).

    Article  CAS  Google Scholar 

  • Simha, R. and Somcynsky, T., “On the Statistical Thermodynamics of Spherical and Chain Molecule Fluids”,Macromolecules,2, 342 (1969).

    Article  CAS  Google Scholar 

  • Spencer, C. F. and Danner, R. P., “Improved Equation for Prediction of Saturated Liquid Density”,J. Chem. Eng. Data,17, 236 (1972).

    Article  CAS  Google Scholar 

  • Starkweather, H. W. Jr., Jones, G. A. and Zoller, P., “The Pressure-Volume-Temperature Relationship and the Heat of Fusion of Polyoxymethylene”,J. Polym. Sci.,26, 257 (1988).

    CAS  Google Scholar 

  • Tsujita, Y., Nose, T. and Hata, T., “Thermodynamic Properties of Poly(ethyleneglycol) and Poly(tetrahydrofuran). I. P-V-T Relations and Internal Pressure”,Polym. J.,5, 201 (1973).

    Article  CAS  Google Scholar 

  • Van Krevelen, D. W. and Hoftyzer, P. J., “Properties of Polymers: Correlation with Chemical Structure”, Elsevier Scientific., Amsterdam, 1972.

    Google Scholar 

  • Yoo, K.-P., Kim, H. and Lee, C. S., “Unified Equation of State Based on the Lattice Fluid Theory for Phase Equilibria of Complex Mixtures. Part I. Molecular Thermodynamic Framework”,Korean J. Chem. Eng.,12(3), 277 (1995a).

    Article  CAS  Google Scholar 

  • Yoo, K.-P., Kim, H. and Lee, C. S., “Unified Equation of State Based on the Lattice Fluid Theory for Phase Equilibria of Complex Mixtures. Part H. Application to Complex Mixtures”,Korean J. Chem. Eng.,12 (3), 289 (1995b).

    Article  CAS  Google Scholar 

  • Zoller, P., Bolli, R., Pahud, V. and Ackermann, H., “Apparatus for Measuring Pressure-Volume-Temperature Relationships of Polymers to 350°C and 220 kg/cm2”,Rev. Sci. Instrum.,47, 948 (1976).

    Article  CAS  Google Scholar 

  • Zoller, P., “PVT Relationships and Equations of State of Polymers “, Chapter VI. Polymer Handbook, 3rd ed., Brandrup, J. and Immergut, E. H., eds., Wiley-Interscience, New York, 475 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BC. Prediction of PVT behavior of polymer melts by the group-contribution lattice-fluid equation of state. Korean J. Chem. Eng. 15, 37–44 (1998). https://doi.org/10.1007/BF02705303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705303

Key words

Navigation