Skip to main content

Advertisement

Log in

The ubiquitin-proteasome system

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The 2004 Nobel Prize in chemistry for the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first ‘tagged’ by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome. This article recounts the key observations that led to the discovery of ubiquitin-proteasome system (UPS). In addition, different aspects of proteasome biology are highlighted. Finally, some key roles of the UPS in different areas of biology and the use of inhibitors of this pathway as possible drug targets are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAA-ATPase:

ATPases associated with various cellular activities-ATPase

BrAAP:

branched chain amino acids preferring

CSN:

COP9 signalosome

ER:

endoplasmic reticulum

HECT:

homologous to E6-AP carboxyl terminus

IFN:

interferon

MHC:

major histocompatibility complex

NTN:

N-terminal nucleophile

PA:

proteasome activator

PAC:

proteasome assembling chaperone

PAN:

proteasome-activating nucleotidase

PI:

proteasome inhibitor

POMP:

proteasome maturing protein

RING:

really interesting new gene

Rpn:

regulatory particle non-ATPase

Rpt:

regulatory particle tripleA-ATPase

SCF:

Skp-Cullin-F box

SNAAP:

small neutral amino acids preferring

UBH:

ubiquitin hydrolase

UBP:

ubiqutin processing

UMP1:

ubiquitin mediated proteolysis-1

UPS:

ubiquitin-proteasome system

References

  • Adams J 2003 Potential for proteasome inhibition in the treatment of cancer;Drug Discovery Today 8 307–315

    Article  CAS  PubMed  Google Scholar 

  • Adrain C, Creagh E M, Cullen S P and Martin S J 2004 Caspasedependent inactivation of proteasome function during programmed cell death inDrosophila and man;J. Biol. Chem. 279 36923–36930

    Article  CAS  Google Scholar 

  • Apcher G S, Heink S, Zantopf D, Kloetzel P M, Schmid H P, Mayer R J and Kruger E 2003 Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal alpha and beta subunits;FEBSLett. 553 200–204

    Article  CAS  Google Scholar 

  • Arendt C S and Hochstrasser M 1999 Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly;EMBO J. 18 3575–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigo A P, Tanaka K, Goldberg A L and Welch W J 1988 Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome);Nature (London) 331 192–204

    Article  CAS  Google Scholar 

  • Arthur J S, Elce J S, Hegadorn C, Williams K and Greer P A 2000 Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division;Mol. Cell. Biol. 20 4474–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton L F, Cruz M, Rangwala R, Deepe G S Jr and Monaco J J 2002 Regulation of immunoproteasome subunit expressionin vivo following pathogenic fungal infection;J. Immunol. 169 3046–3052

    Article  Google Scholar 

  • Barton L F, Runnels H A, Schell T D, Cho Y, Gibbons R, Tevethia S S, Deepe G S Jr and Monaco J J 2004 Immune defects in 28-kDa proteasome activator gamma-deficient mice;J. Immunol. 172 3948–3954.

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N and Goldberg A L 2000 PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone;Nat. Cell. Biol. 2 833–839

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N, Zwickl P, Seemuller E, Baumeister W and Goldberg A L 2003 ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation;Mol. Cell 11 69–78

    Article  CAS  PubMed  Google Scholar 

  • Berndt C, Bech-Otschir D, Dubiel W and Seeger M 2002 Ubiquitin System: JAMMing in the Name of the Lid;Curr. Biol. 12 R815-R817

    Article  CAS  PubMed  Google Scholar 

  • Brown M S, Ye J, Rawson R B and Goldstein J L 2000 Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans;Cell 100 391–398

    Article  CAS  PubMed  Google Scholar 

  • Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen R J and Levy F 2000 Identification and characterization of a mammalian protein interacting with 20S proteasome precursors;Proc. Natl. Acad. Sci. USA 97 10348–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardozo T and Pagano M 2004 The SCF ubiquitin ligase: insights into a molecular machine;Nat. Rev. Mol. Cell. Biol. 5 739–751

    Article  CAS  PubMed  Google Scholar 

  • Chu-Ping M, Slaughter C A and Demartino G N 1992 Purification and characterization of a protein inhibitor of the 20S proteasome (macropain);Biochem. Biophys. Acta 1119 303–311

    Google Scholar 

  • Chandu D and Nandi D 2002 From proteins to peptides to amino acids: comparative genomics of enzymes involved in downstream events during cytosolic protein degradation;Appl. Genom. Proteom. 4 235–252

    Google Scholar 

  • Chandu D and Nandi D 2004 Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation;Res. Microbiol. 155 710–719

    Article  CAS  PubMed  Google Scholar 

  • Chen P and Hochstrasser M 1996 Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly;Cell 86 961–972

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A, Hod Y and Hershko A 1978 A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes;Biochem. Biophys. Res. Commun. 81 1100–1105

    Article  Google Scholar 

  • Ciechanover A, Finley D and Varshavsky A 1984 Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85;Cell 37 57–66

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A and Ben-Saadon R 2004 N-terminal ubiquitination: more protein substrates join in;Trends Cell Biol. 14 103–106

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A and Iwai K 2004 The ubiquitin system: from basic mechanisms to the patient bed;IUBMB Life 56 193–201

    Article  CAS  PubMed  Google Scholar 

  • Cuervo A M, Palmer A, Rivett A J and Knecht E 1995 Degradation of proteasomes by lysosomes in rat liver;Eur. J. Biochem. 227 792–800

    Article  CAS  PubMed  Google Scholar 

  • Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R and Baumeister W 1989 The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria;FEBS Lett. 251 125–131

    Article  CAS  PubMed  Google Scholar 

  • Darwin K H, Ehrt S, Gutierrez-Ramos J C, Weich N and Nathan C F 2003 The proteasome ofMycobacterium tuberculosis is required for resistance to nitric oxide;Science 302 1963–1966

    Article  CAS  PubMed  Google Scholar 

  • Darwin K H, Lin G, Chen Z, Li H and Nathan C F 2005 Characterization of aMycobacterium tuberculosis proteasomal ATPase homologue;Mol. Microbiol. 55 561–571

    Article  CAS  PubMed  Google Scholar 

  • De M, Jayarapu K, Elenich L, Monaco J J, Colbert R A and Griffin T A 2003 Beta 2 subunit propeptides influence cooperative proteasome assembly;J. Biol. Chem. 278 6153–6159

    Article  CAS  PubMed  Google Scholar 

  • Dick T P, Ruppert T, Groettrup M, Kloetzel P M, Kuehn L, Koszinowski U H, Stevanovic S, Schild H and Rammensee H G 1996 Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands;Cell 86 253–262

    Article  CAS  PubMed  Google Scholar 

  • Etlinger J D and Goldberg A L 1977 A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes;Proc. Natl. Acad. Sci. USA. 74 54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enenkel C, Lehmann A and Kloetzel P M 1998 Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast;EMBOJ. 17 6144–6154

    Article  CAS  Google Scholar 

  • Elsasser S and Finley D 2005 Delivery of ubiquitinated substrates to protein-unfolding machines;Nat. CellBiol. 7 742–749

    Article  CAS  Google Scholar 

  • Fabunmi R P, Wigley W C, Thomas P J and DeMartino G N 2000 Activity and regulation of the centrosome-associated proteasome;J. Biol. Chem. 275 409–413

    Article  CAS  PubMed  Google Scholar 

  • Fehling H J, Swat W, Laplace C, Kuhn R, Rajewsky K, Muller U and von Boehmer H 1994 MHC class I expression in mice lacking the proteasome subunit LMP-7;Science 265 1234–1237

    Article  CAS  PubMed  Google Scholar 

  • Fenteany G, Standaert R F, Lane W S, Choi S, Corey E J and Schreiber S L 1995 Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin;Science 268 726–731

    Article  CAS  PubMed  Google Scholar 

  • Finley D, Ciechanover A and Varshavsky A 1984 Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85;Cell 37 43–55

    Article  CAS  PubMed  Google Scholar 

  • Förster A, Whitby F G and Hill C P 2003 The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation;EMBOJ. 22 4356–4364

    Article  Google Scholar 

  • Förster A, Masters E I, Whitby F G, Robinson H and Hill C P 2005 The 1.9 Å structure of aproteasome-11S activator complex and implications forproteasome-PAN/PA700 interactions;Mol. Cell 18 589–599

    Article  PubMed  CAS  Google Scholar 

  • Frentzel S, Pesold-Hurt B, Seelig A and Kloetzel P M 1994 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes;J. Mol. Biol. 236 975–981

    Article  CAS  PubMed  Google Scholar 

  • Gaczynska M, Osmulski P A, Gao Y, Post M J and Simons M 2003 Proline and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity;Biochemistry 42 8663–8670.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Lecker S, Post M J, Hietaranta A J, Li J, Volk R, Li M, Sato K, Saluja A K, Steer M L, Goldberg A L and Simons M 2000 Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide;J. Clin. Invest. 106 439–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickman M H, Rubin D M, Fried V A and Finley D 1998 The regulatory particle of theSaccharomyces cerevisiae proteasome;Mol. Cell. Biol. 18 3149–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein J L 2004 Towering science: an ounce of creativity is worth a ton of impact;Nat. Med. 10 1015–1016

    Article  CAS  PubMed  Google Scholar 

  • Griffin T A, Nandi D, Cruz M, Fehling H J, Kaer L V, Monaco J J and Colbert R A 1998 Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits;J. Exp. Med. 187 97–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin T A, Slack J P, McCluskey T S, Monaco J J and Colbert R A 2000 Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly;Mol. Cell. Biol. Res. Commun. 3 212–217

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik H D and Huber R 1997 Structure of 20S Proteasome from yeast at 2.4Å resolution;Nature (London) 386 463–470

    Article  CAS  Google Scholar 

  • Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H and Huber R 1999 The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study;Proc. Natl. Acad. Sci. USA 96 10976–10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groll M, Kim K B, Kairies N, Huber R and Crews C M 2000 Crystal structure of epoxomicin: 20S proteasome reveals a molecular bassifor selectivity of alpha ‘beta’ —epoxyketone proteasome inhibitors;J. Am. Chem. Soc. 122 1237–1238

    Article  CAS  Google Scholar 

  • Groll M and Huber R 2004 Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach;Biochim. Biophys. Acta 1695 33–44

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Jung T, Merker K and Davies K J 2004 Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease;Int. J. Biochem. Cell. Biol. 36 2519–2530

    Article  CAS  PubMed  Google Scholar 

  • Grziwa A, Maack S, Puhler G, Wiegand G, Baumeister W and Jaenicke R 1994 Dissociation and reconstitution of the Thermoplasma proteasome;Eur. J. Biochem. 223 1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Guo G G, Gu M and Etlinger J D 1994 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase;J. Biol. Chem. 269 12399–12402

    PubMed  Google Scholar 

  • Harbers K, Muller U, Grams A, Li E, Jaenisch R and Franz T 1996 Provirus integration into a gene encoding a ubiquitin-conjugating enzyme results in a placental defect and embryonic lethality;Proc. Natl. Acad. Sci. USA 93 12412–12417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris J L, Alper P B, Li J, Rechsteiner M and Backes B J 2001 Substrate specificity of the human proteasome;Chem. Biol. 8 1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Heink S, Ludwig D, Kloetzel P and Kruger E 2005 IFNγ-induced immune adaptation of the proteasome system is an accelerated and transient response;Proc. Natl. Acad. Sci. USA. 102 9241–9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendil K B, Khan S and Tanaka K 1998 Simultaneous binding of PA28 and PA700 activators to 20S proteasomes;Biochem. J. 332 749–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A and Rose I A 1979 Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP;Proc. Natl. Acad. Sci. USA 76 3107–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A, Heller H, Haas A L and Rose I A 1980 Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis;Proc. Natl. Acad. Sci. USA 77 1783–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A and Rose I A 1981 Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown;J. Biol. Chem. 256 1525–1528

    CAS  PubMed  Google Scholar 

  • Hershko A, Eytan E, Ciechanover A and Haas A L 1982 Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins;J. Biol. Chem. 257 13964–13970

    CAS  PubMed  Google Scholar 

  • Hershko A, Heller H, Elias S and Ciechanover A 1983 Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown;J. Biol. Chem 258 8206–8214

    CAS  PubMed  Google Scholar 

  • Hershko A, Helen H, Eytane and Ressy 1986 The Protein substrate binding site of the Ubiquitin-Protein ligase system;J. Biol. Chem. 261 11982–11989

    Google Scholar 

  • Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen L H, Luca F C, Ruderman J V and Eytan E 1994 Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2;J. Biol. Chem. 269 4940–4946

    CAS  PubMed  Google Scholar 

  • Heinemeyer W, Fischer M, Krimmer T, Stachon U and Wolf D H 1997 The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing;J. Biol. Chem. 272 25200–25209

    Article  CAS  PubMed  Google Scholar 

  • Hicke L 2001 Protein regulation by monoubiquitin;Nat. Rev. Mol. Cell. Biol. 2 195–201

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Hendil K B, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K and Murata S 2005 A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes;Nature (London) 437 1381–1385

    Article  CAS  Google Scholar 

  • Hoffman L, Pratt G and Rechsteiner M 1992 Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate;J. Biol. Chem. 267 22362–22368

    CAS  PubMed  Google Scholar 

  • Hoppe T 2005 Multiubiquitylation by E4 enzymes: ‘one size’ doesn't fit all;Trends Biochem. Sci. 30 183–187

    Article  CAS  PubMed  Google Scholar 

  • Hough R, Pratt G and Rechsteiner M 1986 Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates;j. Biol. Chem. 261 2400–2408

    CAS  PubMed  Google Scholar 

  • Hu Z, Zhang Z, Doo E, Coux O, Goldberg A L and Liang T J 1999 Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex;J. Virol. 73 7231–7240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jager S, Groll M, Huber R, Wolf D H and Heinemeyer W 1999 Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function;J. Mol. Biol. 291 997–1013

    Article  CAS  PubMed  Google Scholar 

  • Johnston J A, Ward C L and Kopito R R 1998 Aggresomes: a cellular response to misfolded proteins;J. Cell. Biol. 143 1883–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M and Ben-Neriah Y 2000 Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity;Annu. Rev. Immunol. 18 621–663

    Article  CAS  PubMed  Google Scholar 

  • Khan S, van den Broek M, Schwarz K, de Giuli R, Diener P A and Groettrup M 2001 Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver;J. Immunol. 167 6859–6868

    Article  CAS  PubMed  Google Scholar 

  • Kim J H, Park K C, Jung S S, Bang O and Chung C H 2003 Deubiquitinating enzymes as cellular regulators;J. Biochem. 134 9–18

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury D J, Griffin T A and Colbert R A 2000 Novel propeptide function in 20 S proteasome assembly influences beta subunit composition;J. Biol. Chem. 275 24156–24162

    Article  CAS  PubMed  Google Scholar 

  • Kishino T, Lalande M and Wagstaff J. 1997 UBE3A/E6-AP mutations cause Angelman syndrome;Nat. Genet. 15 70–73

    Article  CAS  PubMed  Google Scholar 

  • Kisselev A F, Akopian T N and Goldberg A L 1998 Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes;J. Biol. Chem. 273, 1982–1989

    Article  Google Scholar 

  • Kisselev A F, Akopian T N, Woo K M and Goldberg A L 1999 The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation;J. Biol. Chem. 274 3363–3371

    Article  CAS  PubMed  Google Scholar 

  • Kisselev A F, Songyang Z and Goldberg A L 2000 Why does threonine, and not serine, function as the active site nucleophile in proteasomes?;J. Biol. Chem. 275 14831–14837

    Article  CAS  PubMed  Google Scholar 

  • Kloetzel P M 2004 The proteasome and MHC class I antigen processing;Biochim. Biophys. Acta 1695 225–233

    Article  CAS  Google Scholar 

  • Knipfer N and Shrader T E 1997 Inactivation of the 20S proteasome inMycobacterium smegmatis;Mol. Microbiol. 25 375–383

    Article  CAS  PubMed  Google Scholar 

  • Knowlton J R, Johnston S C, Whitby F G, Realini C, Zhang Z, Rechsteiner M and Hill C P 1997 Structure of the proteasome activator REGalpha (PA28alpha);Nature (London) 390 639–643

    Article  CAS  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U and Jentsch S 1999 A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly;Cell 96 635–644

    Article  CAS  PubMed  Google Scholar 

  • Kostova Z and Wolf D H 2003 For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection;EMBOJ. 22 2309–2317

    Article  CAS  Google Scholar 

  • Kruger E, Kloetzel P M and Enenkel C 2001 20S proteasome biogenesis;Biochimie 83 289–293

    Article  CAS  PubMed  Google Scholar 

  • Leggett D S, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R T, Walz T, Ploegh H and Finley D 2002 Multiple associated proteins regulate proteasome structure and function;Mol. Cell. 10 495–507

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gao X, Joss L and Rechsteiner M 2000 The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits;J. Mol. Biol. 299 641–654

    Article  CAS  PubMed  Google Scholar 

  • Liu C W, Corboy M J, DeMartino G N and Thomas P J 2003 Endoproteolytic Activity of the Proteasome;Science 299 408–411

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwick P, Baumeister W and Huber R 1995 Crystal structure of the 20S Proteasome from the ArchaeonT. acidophilum at 3.4Å resolution;Science 268 533–539

    Article  CAS  PubMed  Google Scholar 

  • Lupas A, Zwickl P and Baumeister W 1994 Proteasome sequences in eubacteria;Trends Biochem. Sci. 19 533–534

    Article  CAS  PubMed  Google Scholar 

  • Lykke-Andersen K, Schaefer L, Menon S, Deng X W, Miller J B and Wei N 2003 Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death;Mol. Cell Biol. 23 6790–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M and Nakayama K I 2004 Molecular clearance of ataxin-3 is regulated by a mammalian E4;EMBOJ. 23 659–669

    Article  CAS  Google Scholar 

  • McCutchen-Maloney S L, Matsuda K, Shimbara N, Binns D D, Tanaka K, Slaughter C A and DeMartino G N 2000 cDNA cloning, expression, and functional characterization of PI31, a prolinerich inhibitor of the proteasome;J. Biol. Chem. 275 18557–18565

    Article  CAS  PubMed  Google Scholar 

  • McDonough H and Patterson C 2003 CHIP: a link between the chaperone and proteasome systems;Cell Stress Chaperones 8 303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel P M and Kruger E 2003 Inhibition of proteasome activity induces concerted expression of proteasome genes andde novo formation of mammalian proteasomes;J. Biol. Chem. 278 21517–21525

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Mohan R, Kwok B H, Elofsson M, Sin N and Crews C M 1999 Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity;Proc. Natl. Acad. Sci. USA 96 10403–10408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaco J J and McDevitt H O 1984 H-2-linked low-molecular weight polypeptide antigens assemble into an unusual macromolecular complex;Nature (London) 309 797–799

    Article  CAS  Google Scholar 

  • Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, Tanaka K and Chiba T 1999 Growth retardation in mice lacking the proteasome activator PA28gamma;J. Biol. Chem. 274 38211–38215

    Article  CAS  PubMed  Google Scholar 

  • Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K, Adachi K, Yamano T, Yui K, Kobayashi N, Kasahara M, Tanaka K and Chiba T 2001 Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta;EMBO J. 20 5898–5907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray A W 2004 Recycling the cell cycle: cyclins revisited;Cell 116 221–234

    Article  CAS  PubMed  Google Scholar 

  • Nandi D, Woodward E, Ginsburg D B and Monaco J J 1997 Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits;EMBO J. 16 5363–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi D, Marusina K and Monaco J J 1998 How do endogenous proteins become peptides and reach the endoplasmic reticulum;Curr. Top. Microbiol. Immunol. 232 15–47

    CAS  PubMed  Google Scholar 

  • Niedermann G, Grimm R, Geier E, Maurer M, Realini C, Gartmann C, Soll J, Omura S, Rechsteiner M C, Baumeister W and Eichmann K 1997 Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system;J. Exp. Med. 186 209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Hwang Y P, Lee J S, Seo S H, Yoon S K and Yoon J B 2005 Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases;Mol. Cell. Biol. 25 3842–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickart C M 2001 Mechanisms underlying ubiquitination;Annu. Rev. Biochem. 70 503–533

    Article  CAS  PubMed  Google Scholar 

  • Pickart C M and Cohen R E 2004 Proteasomes and their kin: proteases in the machine age;Nat. Rev. Mol. Cell. Biol. 5 177–187

    Article  CAS  PubMed  Google Scholar 

  • Ping M C, Willy P J, Slaughter C A and DeMartino G N 1993 PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus;J. Biol. Chem. 268 22514–22519

    Google Scholar 

  • Rajkumar S V, Richardson P G, Hideshima T and Anderson K C 2005 Proteasome inhibition as a novel therapeutic target in human cancer;J. Clin. Oncol. 23 630–639

    Article  CAS  PubMed  Google Scholar 

  • Ramos P C, Hockendorff J, Johnson E S, Varshavsky A and Dohmen R J 1998 Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly;Cell 92 489–499

    Article  CAS  PubMed  Google Scholar 

  • Rao H, Uhlmann F, Nasmyth K and Varshavsky A 2001 Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability;Nature (London) 410 955–959

    Article  CAS  Google Scholar 

  • Rechsteiner M and Hill C P 2005 Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors;Trends Cell. Biol. 15 7–33

    Article  CAS  Google Scholar 

  • Reits E A, Benham A M, Plougastel B, Neefjes J and Trowsdale J 1997 Dynamics of proteasome distribution in living cells;EMBO J. 16 6087–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard I, Roudaut C, Marchand S, Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N, Sorimachi H, Lefranc G, Fardeau M, Sebille A and Beckmann J S 2000 Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice;J. Cell. Biol. 151 1583–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock K L, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D and Goldberg A L 1994 Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules;Cell 78 761–771

    Article  CAS  PubMed  Google Scholar 

  • Ruepp A, Eckerskorn C, Bogyo M and Baumeister W 1998 Proteasome function is dispensable under normal but not under heat shock conditions inThermoplasma acidophilum;FEBS Lett. 425 87–90

    Article  CAS  PubMed  Google Scholar 

  • Sassetti C M, Boyd D H and Rubin E J 2003 Genes required for mycobacterial growth defined by high density mutagenesis;Mol. Microbiol. 48 77–84

    Article  CAS  PubMed  Google Scholar 

  • Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W and Madura K 1998 Rad23 links DNA repair to the ubiquitin/proteasome pathway;Nature (London) 391 715–718

    Article  CAS  Google Scholar 

  • Schmid H P, Akhayat O, Martins De Sa C, Puvion F, Koehler K and Scherrer K 1984 The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins;EMBO J. 3 29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C 2004 The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development;Biochim. Biophys. Acta 1695 45–54

    Article  CAS  Google Scholar 

  • Seemuller E, Lupas A, Stock D, Lowe J, Huber R and Baumeister W 1995 Proteasome fromThermoplasma acidophilum: a threonine protease;Science 268 579–582

    Article  CAS  PubMed  Google Scholar 

  • Semple C A, Riken Ger Group and GSL Members 2003 The comparative proteomics of ubiquitination in mouse;Genome Res. 13 1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soza A, Knuehl C, Groettrup M, Henklein P, Tanaka K and Kloetzel P M 1997 Expression and subcellular localization of mouse 20S proteasome activator complex PA28;FEBS Lett. 413 27–34

    Article  CAS  PubMed  Google Scholar 

  • Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L and Rotin D 1997 Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination;EMBO J. 16 6325–6336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X M, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A and Cohen G M 2004 Caspase activation inhibits proteasome function during apoptosis;Mol. Cell. 14 81–93

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ii K, Ichihara A, Waxman L and Goldberg A L 1986 A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution;J. Biol. Chem. 261 15197–15203

    CAS  PubMed  Google Scholar 

  • Tanaka K, Yoshimura T and Ichihara A 1989 Role of substrate in reversible activation of proteasomes (multi-protease complexes) by sodium dodecyl sulfate;J. Biochem. (Tokyo) 106 495–500

    Article  CAS  Google Scholar 

  • Turk V, Turk B and Turk D 2001 Lysosomal cysteine proteases: facts and opportunities;EMBO. J. 20 4629–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N and Tsukihara T 2002 The structure of the mammalian 20S proteasome at 2.75 Å resolution;Structure (Camb). 10 609–618

    Article  CAS  Google Scholar 

  • Ustrell V, Hoffman L, Pratt G and Rechsteiner M 2002 PA200, a nuclear proteasome activator involved in DNA repair;EMBO J. 21 3516–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Kaer L, Ashton-Rickardt P G, Eichelberger M, Gaczynska M, Nagashima K, Rock K L, Goldberg A L, Doherty P C and Tonegawa S 1994 Altered peptidase and viral-specific T cell response in LMP2 mutant mice;Immunity 1 533–541

    Article  PubMed  Google Scholar 

  • Varshavsky A 2005 Regulated protein degradation;Trends Biochem Sci. 30 283–286

    Article  CAS  PubMed  Google Scholar 

  • Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N and Liu E A 2004In vivo activation of the p53 pathway by small-molecule antagonists of MDM2;Science 303 844–848

    Article  CAS  Google Scholar 

  • Velichutina I, Connerly P L, Arendt C S, Li X and Hochstrasser M 2004 Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast;EMBO J. 23 500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J and Deshaies R J 2000 Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes;Mol. Biol. Cell. 11 3425–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma R, Aravind L, Oania R, McDonald W H, Yates J R 3rd, Koonin E V and Deshaies R J 2002 Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome;Science 298 611–615

    Article  CAS  PubMed  Google Scholar 

  • Voges D, Zwickl P and Baumeister W 1999 The 26S proteasome: a molecular machine designed for controlled proteolysis;Annu. Rev. Biochem. 68 1015–10168

    Article  CAS  PubMed  Google Scholar 

  • Wang H R, Kania M, Baumeister W and Nederlof P M 1997 Import of human and Thermoplasma 20S proteasomes into nuclei of HeLA cells requires functional NLS sequences;Eur. J. Cell. Biol. 73 105–113

    CAS  PubMed  Google Scholar 

  • Ward C L, Omura S and Kopito R R 1995 Degradation of CFTR by the ubiquitin-proteasome pathway;Cell 83 121–127

    Article  CAS  PubMed  Google Scholar 

  • Weissman A M 2001 Themes and variations on ubiquitylation;Nat. Rev. Mol. Cell. Biol. 2 169–178

    Article  CAS  PubMed  Google Scholar 

  • Whitby F G, Masters E I, Kramer L, Knowlton J R, Yao Y, Wang C C and Hill C P 2000 Structural basis for the activation of 20S proteasomes by 11S regulators;Nature (London) 408 115–120

    Article  CAS  Google Scholar 

  • Wigley W C, Fabunmi R P, Lee M G, Marino C R, Muallem S, DeMartino G N and Thomas P J 1999 Dynamic association of proteasomal machinery with the centrosome;J. Cell. Biol. 145 481–490

    Article  Google Scholar 

  • Wilk S and Orlowski M 1983 Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex;J. Neurochem. 40 842–849

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson K D, Urban M K and Haas A L 1980 Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes;J. Biol. Chem. 255 7529–7532

    CAS  PubMed  Google Scholar 

  • Wilkinson C R, Wallace M, Morphew M, Perry P, Allshire R, Javerzat J P, McIntosh J R and Gordon C 1998 Localization of the 26S proteasome during mitosis and meiosis in fission yeast;EMBO. J. 17 6465–6476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel P M and Kruger E 2000 Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7 (β5i) incorporation into 20S proteasomes;J. Mol. Biol. 30 1–9

    Article  CAS  Google Scholar 

  • Wojcik C and DeMartino G N 2003 Intracellular localization of proteasomes;Int. J. Biochem. Cell. Biol. 35 579–589

    Article  CAS  PubMed  Google Scholar 

  • Yao T and Cohen R E2002 A cryptic protease couples deubiquitination and degradation by the proteasome;Nature (London) 419 403–407

    Article  CAS  Google Scholar 

  • Yen H C, Gordon C and Chang E C 2003Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome;Cell 112 207–217

    Article  CAS  PubMed  Google Scholar 

  • Zaiss D M, Standera S, Holzhutter H, Kloetzel P and Sijts A J 1999 The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes;FEBSLett. 457 333–338

    Article  CAS  Google Scholar 

  • Zaiss D M, Standera S, Kloetzel P M and Sijts A J 2002 PI31 is a modulator of proteasome formation and antigen processing;Proc. Natl. Acad. Sci. USA 99 14344–14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Clawson A and Rechsteiner M 1998a The proteasome activator 11 S regulator or PA28. Contribution By both alpha and beta subunits to proteasome activation;J. Biol. Chem. 273 30660–30668

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Clawson A, Realini C, Jensen C C, Knowlton J R, Hill C P and Rechsteiner M 1998b Identification of an activation region in the proteasome activator REGalpha;Proc. Natl. Acad. Sci. USA 95 2807–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwickl P, Kleinz J and Baumeister W 1994 Critical elements in proteasome assembly;Nat. Struct. Biol. 1 765–770

    Article  CAS  PubMed  Google Scholar 

  • Zwickl P, Ng D, Woo K M, Klenk H P and Goldberg A L 1999 An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes;J. Biol. Chem. 274 26008–26016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Nandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandi, D., Tahiliani, P., Kumar, A. et al. The ubiquitin-proteasome system. J. Biosci. 31, 137–155 (2006). https://doi.org/10.1007/BF02705243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705243

Keywords

Navigation