Skip to main content
Log in

Development of a computer algorithm based on a conjugate gradient approach for optimization of fed-batch fermentations

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The problem of optimization of fed-batch fermentations using the substrate feed rate as the control variable is singular in nature. Previous approaches, including the boundary condition iteration method and transformation to a nonsingular problem using a different control variable, do not work well for solving optimization of systems governed by more than four differential equations. The applicability of a first-order conjugate gradient algorithm for optimizing fed-batch fermentations was tested for systems of varing complexity. This approach does not need any variable transformation ora priori knowledge of the control arc sequence. Constraints on the feed rate are handled in a simple and direct manner. The algorithm worked very well for three, four, and five-dimensional singular systems. The correctness of the optimal profile was judged by observing the variation in the sign of the gradient of the Hamiltonian. The gradient was found to be zero during the singular period and had the appropriate sign on the boundary arcs. The optimization method based on conjugated gradient approach can be complementary to the boundary condition iteration method for determination of the exact optimum profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F:

fraction of plasmid-free cells, or feed rate L/hr

g:

gradient of the Hamiltonian with respect to the control vector

H:

Hamiltonian

I:

a parameter defined in Eq. (13)

K, k:

model parameters, or weight on the penalty function

kd :

first order inactivation constant [hr1]

p:

probability of forming a plasmid-free cell upon cell division

R:

fraction of glucose that is channeled through the fermentative pathway, or metabolic flux [(g glucose)/hr. OD]

S:

substrate concentration [g/L]

s:

conjugate gradient direction

t:

time [hr]

V:

volume [L]

w:

a boundary function defined by Eq. (6), (12)

X:

cell mass concentration [g/L or OD]

x:

state vector

Yxy :

yield of respiratory pathway [OD/(g. glucose)]

Yxj :

yield of fermentative pathway [OD/(g. glucose)]

α:

a search parameter in the conjugate gradient method

β:

a search parameter in the conjugate gradient method

λ :

adjoint vector, or costate vector

μ:

specific cell growth rate [hr]

Π:

performance index, or objective function

π:

invertase formation rate [KU/hr]

ϕ:

gradient of Hamiltonian in singular problems

+:

plasmid-containing cells

-:

plasmid-free cells

*:

optimal

References

  1. San, K. Y. and Stephanopoulos, G.:Biotechnol. Bioeng.,26, 1261 (1984).

    Article  Google Scholar 

  2. Parulekar, S. J. and Lim, H. C:Adv. Biochem. Eng. Biotech.,32, 207 (1985).

    CAS  Google Scholar 

  3. San, K. Y. and Stephanopoulos, G.:Biotechnol. Bioeng.,28, 356 (1986).

    Article  CAS  Google Scholar 

  4. Modak, J. M., Lim, H. C. and Tayeb, Y. J.:Biotechnol. Bioeng.,28, 1396 (1986).

    Article  CAS  Google Scholar 

  5. Lim, H. C., Tayeb, Y. J., Modak, J. M. and Bonte, P.:Biotechnol. Bioeng.,28, 1408 (1986).

    Article  CAS  Google Scholar 

  6. Pyun, Y. R., Modak, J. M., Chang, Y. K. and Lim, H. C:Biotechnol. Bioeng.,33, 1 (1989).

    Article  CAS  Google Scholar 

  7. Modak, J. M. and Lim, H. C:Biotechnol. Bioeng.,33, 11 (1989).

    Article  CAS  Google Scholar 

  8. Menawat, A., Mutharasan, R. and Coughanowr, D. R.:AIChE. J.,33, 776 (1987).

    Article  CAS  Google Scholar 

  9. Shimizu, H., Araki, K., Shioya, S. and Suga, K.:Biotechnol. Bioeng,38, 196 (1991).

    Article  CAS  Google Scholar 

  10. San, K. Y. and Stephanopoulos, G.:Biotechnol. Bioeng,34, 72 (1989).

    Article  CAS  Google Scholar 

  11. Lasdon, L. S., Mitter, S. K. and Warren, A.D.:IEEE Trans. Automatic Control.,AC-12, 132 (1987).

    Google Scholar 

  12. Pagurek, B. and Woodside, C. M.:Automatica.,4, 337 (1968).

    Article  Google Scholar 

  13. Stutts, B.: Ph.D. Thesis, Purdue University, West Laffayette, IN 47907, USA.

  14. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. and Mishchenko, E. F.: “The Mathematical Theory of Optimal Processes”, Interscience, New York (1962).

    Google Scholar 

  15. Bryson, A. G. and Ho, Y. C: “Applied Automatic Control”, John Wiley, New York (1975).

    Google Scholar 

  16. Patkar, A. Y.: Ph.D. Thesis, Purdue University, West Laffayette, IN 47907, USA (1972).

  17. Sardonini, C. A. and DiBiasio, D.:Biotech. Bioeng.,29, 469 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patkar, A., Lee, D.H. & Seo, JH. Development of a computer algorithm based on a conjugate gradient approach for optimization of fed-batch fermentations. Korean J. Chem. Eng. 10, 146–155 (1993). https://doi.org/10.1007/BF02705137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705137

Keywords

Navigation