Skip to main content
Log in

Regulation of activity of the yeast TATA-binding protein through intra-molecular interactions

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Dimerization is proposed to be a regulatory mechanism for TATA-binding protein (TBP) activity bothin vitro andin vivo. The reversible dimer-monomer transition of TBP is influenced by the buffer conditionsin vitro. Usingin vitro chemical cross-linking, we found yeast TBP (yTBP) to be largely monomeric in the presence of the divalent cation Mg2+, even at high salt concentrations. Apparent molecular mass of yTBP at high salt with Mg2+, run through a gel filtration column, was close to that of monomeric yTBP. Lowering the monovalent ionic concentration in the absence of Mg2+, resulted in dimerization of TBP. Effect of Mg2+ was seen at two different levels: at higher TBP concentrations, it suppressed the TBP dimerization and at lower TBP levels, it helped keep TBP monomers in active conformation (competent for binding TATA box), resulting in enhanced TBP-TATA complex formation in the presence of increasing Mg2+. At both the levels, activity of the full-length TBP in the presence of Mg2+ was like that reported for the truncated C-terminal domain of TBP from which the N-terminus is removed. Therefore for full-length TBP, intra-molecular interactions can regulate its activity via a similar mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMH:

Bismaleimidohexane

TBP:

TATA-binding protein

yTBP:

yeast TBP

References

  • Bell B and Tora L 1999 Regulation of gene expression by multiple forms of TFIID and other novel TFIID complexes;Exp. Cell. Res. 246 11–19

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Sharp P A and Guarente L 1988 Function of a yeast TATA element binding protein in a mammalian transcription system;Nature (London) 334 37–42

    Article  CAS  Google Scholar 

  • Burley S K and Roeder R G 1996 Biochemistry and structural biology of transcription factor IID (TFIID);Annu. Rev. Biochem. 65 769–799

    Article  PubMed  CAS  Google Scholar 

  • Campbell K M, Ranallo R T, Stargell L A and Lumb K J 2000 Reevaluation of transcriptional regulation by TATA-Binding protein oligomerization: Predominance of monomers; Biochemistry 39 2633–2638

    Article  PubMed  CAS  Google Scholar 

  • Chasman D I, Flaherty K M, Sharp P A and Kornberg R D 1993 Crystal structure of yeast TATA-binding protein and model for interaction with DNA;Proc. Natl. Acad. Sci. USA 90 8174–8178

    Article  PubMed  CAS  Google Scholar 

  • Coleman R A, Taggart A K P, Benjamin L Rand Pugh B F 1995 Dimerization of the TATA Binding Protein;J. Biol. Chem. 270 13842–13849

    Article  PubMed  CAS  Google Scholar 

  • Coleman R A and Pugh B F 1997 Slow dimer dissociation of TATA binding protein dictates the kinetics of DNA binding;Proc. Natl. Acad. Sci. USA 94 7221–7226

    Article  PubMed  CAS  Google Scholar 

  • Coleman R A, Taggart A K P, Burma S, Chicca II J J and Pugh B F 1999 TFIIA regulates TBP and TFIID dimers;Mol. Cell 4 451–457

    Article  PubMed  CAS  Google Scholar 

  • Daugherty M A, Brenowitz M and Fried G 1999 The TATA binding protein fromSaccharomyces cerevisiae oligomerizes in solution at micromolar concentrations to form tetramers and octamers;J. Mol. Biol. 285 1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Daugherty M A, Brenowitz M and Fried G 2000 Participation of the amino-terminal domain in the self-association of the full-length yeast TATA binding protein;Biochemistry 39 4869–4880

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell B G, Bussey H, Davis R W, Dujon B, Feldmann H, Galibert F, Hoheisel J D, Jacq C, Johnston M, Louis E J, Mewes H W, Murakami Y, Philippsen P, Tettelin H and Oliver G G 1996 Life with 6000 genes;Science 274 546, 563–567

    Article  PubMed  CAS  Google Scholar 

  • Hernandez N 1993 TBP, a universal transcription factor?;Genes Dev.7 1291–1308

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi M, Yamamoto T, Ohkuma Y, Weil P A and Roeder R G 1990 Analysis of structure-function relationship of yeast TATA box binding factor TFIID;Cell 61 1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Icard-Liepkalns C 1993 Binding activity of the human transcription factor TFIID;Biochem. Biophys. Res. Commun. 193 453–459

    Article  PubMed  CAS  Google Scholar 

  • Imbalzano A N, Zaret K S and Kingston R E 1994 Transcription factor (TF) IIB and TFIIA can independently increase the affinity of the TATA-binding protein for DNA;J. Biol. Chem. 269 8280–8286

    PubMed  CAS  Google Scholar 

  • Jackson-Fisher A J, Burma S, Portnoy M, Schneeweis L A, Coleman R A, Mitra M, Chitikila C and Pugh B F 1999a Dimer dissociation and thermosensitivity kinetics of theSaccharomyces cerevisiae and human TATA Binding Proteins;Biochemistry 38 11340–11348

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Fisher A J, Chitikila C, Mitra M and Pugh B F 1999b A role for TBP dimerization in preventing unregulated gene expression;Mol. Cell 3 717–727

    Article  PubMed  CAS  Google Scholar 

  • Jupp R, Flores O, Nelson J A and Ghazel P 1993 The DNA binding subunit of human transcription factor IID can interact with the TATA box as a multimer;J. Biol. Chem. 268 16105–16108

    PubMed  CAS  Google Scholar 

  • Kato K, Makino Y, Kishimoto T, Yamauchi J, Kato S, Muramatsu M and Tamura T 1994 Multimerization of the mouse TATA-binding protein (TBP) driven by its C-terminal conserved domain;Nucleic Acids Res. 22 1179–1185

    Article  PubMed  CAS  Google Scholar 

  • Kuddus R and Schmitz M C 1993 Effect of the non-conserved N-terminus on the DNA binding activity of the yeast TATA binding protein;Nucleic Acids Res. 21 1789–1796

    Article  PubMed  CAS  Google Scholar 

  • Lee T I and Young R A 1998 Regulation of gene expression by TBP-associated proteins;Genes Dev. 12 1398–1408

    PubMed  CAS  Google Scholar 

  • Lescure A, Lutz Y, Eberhard D, Jacq X, Krol A, Grummt I, Davidson I, Chambon P and Tora L 1994 The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters;EMBO J. 13 1166–1175

    PubMed  CAS  Google Scholar 

  • Lieberman P M, Schmidt M C, Kao C C and Berk A J 1991 Two distinct domains in the yeast transcription factor IID and evidence for a TATA Box induced conformational change;Mol. Cell. Biol. 11 63–74

    PubMed  CAS  Google Scholar 

  • Madore E, Florentz C, Giege R and Lapointe J 1999 Magnesium-dependent alternative foldings of active and inactiveEscherichia coli tRNAGlu revealed by chemical probing;Nucleic Acids Res. 27 3583–3588

    Article  PubMed  CAS  Google Scholar 

  • Miaskeiwicz K and Ornstein R L 1996 DNA binding by TATAbox binding protein (TBP): A molecular dynamics computational study;J. Biomol. Struct. Dynam. 13 593–600

    Google Scholar 

  • Nikolov D B, Hu S, Lin J, Gasch A, Hoffmann A, Horikoshi M, Chua N, Roeder R G and Burley S K 1992 Crystal structure of TFIID TATA-box binding protein;Nature (London) 360 40–46

    Article  CAS  Google Scholar 

  • Nikolov D B, Chen H, Halay E D, Hoffman A, Roeder R G and Burley S K 1996 Crystal structure of human TATA box binding protein/TATA element complex;Proc. Natl. Acad. Sci. USA 93 4862–4867

    Article  PubMed  CAS  Google Scholar 

  • Perez-Howard G M, Weil P A and Beechem J M 1995 Yeast TATA binding protein interaction with DNA: fluorescence determination of oligomeric state, equilibrium binding, onrate, and dissociation kinetics;Biochemistry 34 8005–8017

    Article  PubMed  CAS  Google Scholar 

  • Petri V, Hsieh M and Brenowitz M 1995 Thermodynamic and kinetic characterization of the binding of the TATA Binding Protein to the Adenovirus E4 promoter;Biochemistry 34 9977–9984

    Article  PubMed  CAS  Google Scholar 

  • Record M T, deHaseth P L and Lohman T M 1977 Interpretation of monovalent and divalent cation effects on thelac repressor-operator interaction;Biochemistry 16 4791–4796

    Article  PubMed  CAS  Google Scholar 

  • Rigby P W J 1993 Three in one and one in three: It all depends on TBP;Cell 72 7–10

    Article  PubMed  CAS  Google Scholar 

  • Taggart A K P and Pugh B F 1996 Dimerization of TFIID when not bound to DNA;Science 272 1331–1333

    Article  PubMed  CAS  Google Scholar 

  • Wong J M and Bateman E 1994 TBP-DNA interactions in the minor groove discriminate between A: T and T : A base pairs;Nucleic Acids Res. 22 1890–1896

    Article  PubMed  CAS  Google Scholar 

  • Zhao X and Herr W 2002 A regulated Two-step mechanism of TBP binding to DNA: A solvent-exposed surface of TBP inhibits TATA box recognition;Cell 108 615–627

    Article  PubMed  CAS  Google Scholar 

  • Zerby D and Lieberman P M 1997 Functional analysis of TFIID-activator interaction by magnesium-agarose gel electrophoresis;Methods 12 217–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnima Bhargava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanathi, P., Mishra, A.K. & Bhargava, P. Regulation of activity of the yeast TATA-binding protein through intra-molecular interactions. J Biosci 28, 413–421 (2003). https://doi.org/10.1007/BF02705116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705116

Keywords

Navigation