Skip to main content
Log in

Liesegang patterns: Complex formation of precipitate in an electric field

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald’s supersaturation model reported by Buki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of the first and the last bands (X n) measured from the junction point of the outer and the inner electrolytes can be described by the functionX n =a 1τ 1/2n +a 2τn +a 3, where τn is the time elapsed until the nth band formation,a 1,a 2 anda 3 are constants. The variation of the total number of bands with different electric field strengths (ε) has a maximum. For higher ε one can observe a moving precipitation zone that becomes wider due to precipitation and reversible complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R E Liesegang,Naturwiss. Wochenschr. 11, 353 (1896)

    Google Scholar 

  2. S C Müller and J Ross,J. Phys. Chem. A107, 7997 (2003)

    Google Scholar 

  3. H W Morse and G W Pierce,Proc. Am. Acad. Arts Sci. 38, 625 (1903)

    Google Scholar 

  4. C S Kuo, E L Cabarcos and R Bansil,Physica A239, 120 (1997)

    ADS  Google Scholar 

  5. V Holba and F Fusek,Collect. Czech. Chem. C65, 1438 (2000)

    Article  Google Scholar 

  6. J M García-Ruiz, D Rondón, A García-Romero and F Otálora,J. Phys. Chem. 100, 8854 (1996)

    Article  Google Scholar 

  7. J George and G Varghese,Chem. Phys. Lett. 362, 8 (2002)

    Article  ADS  Google Scholar 

  8. J George, I Paul, P A Varughese and G Varghese,Pramana — J. Phys. 60, 1259 (2003)

    Article  ADS  Google Scholar 

  9. A Toramaru, T Harada and T Okamura,Physica D183, 133 (2003)

    ADS  Google Scholar 

  10. P Hantz,J. Phys. Chem. B104, 4266 (2000)

    Google Scholar 

  11. P Hantz,Phys. Chem. Chem. Phys. 4, 1262 (2002)

    Article  Google Scholar 

  12. P Hantz,J. Chem. Phys. 117, 6646 (2002)

    Article  ADS  Google Scholar 

  13. J Samseth, M B Kirkedelen, F A Maao, A Hansen and M-A Einarsrud,J. Non-Cryst. Solids 225, 298 (1998)

    Article  ADS  Google Scholar 

  14. A H Sharbaugh III and A H Sharbaugh,J. Chem. Edu. 66, 589 (1989)

    Article  Google Scholar 

  15. I Das, A Pushkarna and A Bhattacharjee,J. Phys. Chem. 94, 8968 (1990)

    Article  Google Scholar 

  16. I Das, A Pushkarna and A Bhattacharjee,J. Phys. Chem. 95, 3866 (1991)

    Article  Google Scholar 

  17. R Sultan and S Panjarian,Physica D157, 241 (2001)

    ADS  Google Scholar 

  18. R Sultan and R Halabieh,Chem. Phys. Lett. 332, 331 (2000)

    Article  ADS  Google Scholar 

  19. R F Sultan,Phys. Chem. Chem. Phys. 4, 1253 (2002)

    Article  Google Scholar 

  20. I Lagzi,Phys. Chem. Chem. Phys. 4,1268 (2002)

    Article  Google Scholar 

  21. I Lagzi and F Izsák,Phys. Chem. Chem. Phys. 5, 4144 (2003)

    Article  Google Scholar 

  22. M Al-Ghoul and R Sultan,J. Phys. Chem. A107, 1095 (2003)

    Google Scholar 

  23. R Sultan and S Sadek,J. Phys. Chem. 100, 16912 (1996)

    Article  Google Scholar 

  24. V Nasreddine and R Sultan,J. Phys. Chem. A103, 2934 (1999)

    Google Scholar 

  25. Z Shreif, M Al-Ghoul and R Sultan,Chem. Phys. Chem. 3, 592 (2002)

    Google Scholar 

  26. M Zrínyi, L Gálfi, É Smidróczki, Z Rácz and F Horkay,J. Phys. Chem. 95, 1618 (1991)

    Article  Google Scholar 

  27. N Hilal and R Sultan,Chem. Phys. Lett. 374, 183 (2003)

    Article  ADS  Google Scholar 

  28. I Das, A Pushkarna and N R Agrawal,J. Phys. Chem. 93, 7269 (1989)

    Article  Google Scholar 

  29. A Büki, É Kárpáti-Smidróczki, M Zrínyi,J. Chem. Phys. 103, 10387 (1995)

    Article  Google Scholar 

  30. A Büki, É Kárpáti-Smidróczki and M Zrínyi,Physica A220, 357 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagzi, I. Liesegang patterns: Complex formation of precipitate in an electric field. Pramana - J Phys 64, 291–298 (2005). https://doi.org/10.1007/BF02704882

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704882

Keywords

PACS Nos

Navigation