Skip to main content

Conformation of nifedipine in hydrated 1,2-di-myristoyl-sn-glycero-3-phosphorylcholine bilayer molecular dynamics simulation

Abstract

The conformation of nifedipine, a cardiac and smooth muscle calcium ion channel antagonist is studied in a hydrated bilayer of forty nine 1,2-di-myristoyl-sn-glycero-3-phosphorylcho-line (DMPC) molecules using molecular dynamics (MD) simulation technique. The simulation was carried out in conditions of constant number, volume and temperature (NVT) at 310 K, which is above the liquid crystalline (Lα) transition temperature of DMPC. The periodic boundary conditions were applied in three-dimensions. Thus the model represented an infinite bilayer. The important geometric parameters characteristic to DMPC and nifedipine molecules were calculated and compared with other theoretical and experimental results pertaining to nifedipine and other related dihydrophyridine (DHP) analogues. Our results suggest that conformational parameters required for antagonist activity are fairly conserved during the interaction of nifedipine with DMPC bilary and bilayer stabilizes the drug conformation in the bioactive form.

This is a preview of subscription content, access via your institution.

References

  • Alper H E, Bassolino D and Stouch T R 1993 a Computer simulation of a phospholipids monolayer—water system — The influence of long range forces on water structure and dynamics;j. Chme. Phys. 98 9797–9807

    Google Scholar 

  • Alper H E, Bassolino D and Stouch T R 1993b The limiting behavior of water hydrating a phospholipid monolayer—A computer simulation study;J. Chem. Phys. 99 5547–5559

    Article  CAS  Google Scholar 

  • Alper H E and Stouch T R 1995 Orientation and diffusion of a drug analog in biomembranes molecular dynamics simulation;J. Phys. Chem. 99 5724–5731

    Article  CAS  Google Scholar 

  • Bassolino-Klimas D, Alper H E and Stouch T R 1993 Solute difusion in lipid bilayer membranes: an atomic level study by molecular dynamics simulation;Biochemistry 32 12624–12637

    Article  CAS  Google Scholar 

  • Bauerle H D and Seelig J 1991 Interaction of charged and uncharged calcium channel antagonists with phospholipid membrane. Binding equilibrium, binding enthalpy and membrane location;Biochemistry 30 7203–7211

    Article  CAS  Google Scholar 

  • Damodaran K V, Merz B M and Gaber B P 1992 Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer;Biochemistry 31 7656–7664

    Article  CAS  Google Scholar 

  • Damodaran K V and Merz K M 1993 Head group water interactions in lipid bilayers—a comparison between DMPC based and DLPE based lipid bilayers;Langmuir 9 1179–1183

    Article  CAS  Google Scholar 

  • Damodaran K V and Merz M K 1994 A comparison of DMPC and DLPE based liquid bilayers;Biophys. J. 66 1076–1083

    Article  CAS  Google Scholar 

  • De Young L R and Dill K A 1988 Solute partitioning into lipid bilayer membranes;Biochemistry 27 5281–5289

    Article  Google Scholar 

  • Edholm O and Johansson J 1987 Lipid bilayer polypeptide interactions studied by molecular dynamics simulation;Eur. Biophys. J. 14 203–209

    Article  CAS  Google Scholar 

  • Edholm O and Nyberg A M 1992 Cholesterol in model membranes: a molecular dynamics simulation;Biophys. J. 63 1081–1089

    Article  CAS  Google Scholar 

  • Edholm O, Berendson H J C and Van der Ploeg P 1983 Conformational entropy of a bilayer membrane derived from a molecular dynamics simulation;Mol. Phys. 48, 379–388

    Article  CAS  Google Scholar 

  • Egberts E 1988Molecular dynamics simulation of multilayer membranes, Ph.D, thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Egberts E and Berendsen H J C 1988 Molecular dynamics simulation of a smectic liquid crystal with atomic detail;J. Chem. Phys. 89 3718–3732

    Article  CAS  Google Scholar 

  • Essex J W, Hann M M and Richard W G 1994 Molecular dynamics simulation of a hydrated phospholipid bilayer;Philos. Trans. R. Soc. London B344 239–260

    Google Scholar 

  • Fossheim R, Svarteng K, Mostad A, Romming C, Shefter E and Triggle D J 1982 Crystal structure and pharmacological activity of calcium channel anatgonists: 2, 6-Dimethyl-3, 5-dicarbomethoxy-4-(unsubstituted, 3-methly, 4-methyl-, 3-nitro-, 4-nitro-, and 2, 4-dinitrophenyl)-l, 4-dihydropyridine;J Med. Chem. 25 126–131

    Article  CAS  Google Scholar 

  • Gaudio A C, Korolkovas A and Takahata Y 1994 Channel antagonist (nifedipine analogues): A quantum chemical/classical approach;J. Pharmacol. Sci. 83 1110–1115

    Article  CAS  Google Scholar 

  • Heller H, Schaefer K and Schulten K 1993 Molecular dynamics simulation of a bilayer of 200 lipids in the gel and liquid crystal phases;J Phys. Chem. 97 8343–8360

    Article  CAS  Google Scholar 

  • Herbette L G, Van Erve Y M and Phode D G 1989 Interaction of 1, 4-dihydropyridine calcium channel antagonists with biological membranes: lipid bilayer partitioning could occur before drug binding to receptors;J. Mol. Cell Cardiol. 21 187–201

    Article  CAS  Google Scholar 

  • Huang P and Loew G H 1995 Interaction of a amphiphilic peptide with a phospholipid bilayer surface by molecular dynamics simulation study;J. Biomol. Struct. Dyn. 12 937–955

    Article  CAS  Google Scholar 

  • Huang P, Bertaccini Ed and Loew G H 1995 Molecular dynamics simulation of anesthetic phospholipid bilayer interactions;J. Biomol. Struct. Dyn. 12 725–754

    Article  CAS  Google Scholar 

  • Janiak M J, Small D M and Shipley G G 1979 Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin;J Biol. Chem. 254 6068–6078

    CAS  PubMed  Google Scholar 

  • Janis R A and Triggle D J 1983 New Developments in Ca2 + channel antagonists;J Med. Chem. 26 775–785

    Article  CAS  Google Scholar 

  • Janis R A, Silver P and Triggle D J 1987 Drug action and cellular calcium regulation;Adv. Drug. Res. 16 1049–1058

    Google Scholar 

  • Jorgenson W L, Chandrasekhar J, Medura J D, Impey R W and Klein M M L 1983 Comparison of simple potential functions for simulating liquid water;J Chem. Phys. 79 926–935

    Article  Google Scholar 

  • Kaul P and Kothekar V 1988 Dynamic fluoroscence polarization studies on lipid mobilities in phospholipid vescicles in the presence of calcium channel;J Biosci. 13 359–365

    Article  CAS  Google Scholar 

  • Kothekar V and Gupta D 1994 200 Picosecond molecular dynamics simulation of interaction of nifedipine with 1–2 dimyristoyl phosphatidylcholine membrane;Indian J. Biochem. Biophys. 31 24–30

    CAS  PubMed  Google Scholar 

  • Kothekar V 1996 Molecular dynamics study of interaction of dimyristoylphosphotidylcholine with water;J Biosci. 21 577–597

    Article  CAS  Google Scholar 

  • Lang D A and Triggle D J 1985 Conformational features of Calcium channel agonists and antagonists analogs of nifedipine;Mol, Pharmacol. 27 544–548

    Google Scholar 

  • Levitt M 1983 Molecular dynamics of native proteins. I. Computer simulation of trajectories;J Mol. Biol. 168 595–620

    Article  CAS  Google Scholar 

  • Lewis B A and Engleman D M 1983 Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphotidyl choline vescicles;J. Mol. Biol. 166 211–217

    Article  CAS  Google Scholar 

  • Mahmoudian M and Richards W G 1986 A conformational distinction between dihydropyridine calcium channel agonists and antagonists;J. Chem. Soc. Chem. Commun. 739–741

  • Mason R P, Campbell S, Wang S and Herbette L G 1989a Comparison of location and binding for the positively charged 1, 4 dihydropyridine calcium channel antagonist amlodipine with uncharged drugs of this class in cardiac membranes;J. Mol. Pharmacol. 36, 634–640

    CAS  Google Scholar 

  • Mason R P and Chester D W 1989 Diffusional dynamics of an active rhodamine labelled 1, 4 dihydropyridine in sarcolemmal lipid multibilayer;Biophys. J. 56 1193–1201

    Article  CAS  Google Scholar 

  • Mason R P, Gonye G E, Chester D W and Herbette L G 1989b Partitioning and location of Bay K8644, 1,4-dihyd-ropyridine calcium channel channel antagonist, in model and biological membranes;Biophys. J.55 769–778

    Article  CAS  Google Scholar 

  • Mason R P, Rhodes D G and Herbette LG 1991 Reevaluating equilibrium and knetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes;J. Med. Chem. 34 869–877

    Article  CAS  Google Scholar 

  • Mason R P, Moring J and Herbette L G 1990 A molecular model involving the membrane bilayer in the binding of lipid soluble drugs to their receptors in heart and brain;Int. J. Rad. Appl. Instrum. B17 13–33

    Article  Google Scholar 

  • Mrigank, Royyuru A K and Kothekar V 1986 Origin of sequence specific recognition of DNA by non intercalating anti-tumor antibiotics;FEBS Lett. 195 203–207

    Article  CAS  Google Scholar 

  • Pearlman D A, Case D A, Caldwell J C, Singh U C, Weiner P K and Kollman P A 1991 University of California, AMBER 4.0: Assisted Model Building with Energy Refinement: A Computer Simulation software

  • Pearson R H and Pascher 11979 The molecular structure of lecithin dihydrate;Nature (London)281 499–501

  • Pople J A, Santry D P and Segal G A 1965 Approximate self consistent molecular orbital theory I. Invarient procedures;J. Chem. Phys. 43 129–135

    Article  Google Scholar 

  • Rhodes D G, Sarmiento J G and Herbette L G 1985 Kinetics of binding of membrane active drugs to receptor sites. Diffusion linked rates for a membrane bilayer approach of 1,4 dihydropyridine calcium channel antagonists to their active site;Mol. Pharmacol. 27 612–623

    CAS  PubMed  Google Scholar 

  • Robinson A J, Richards W G, Thomas P J and Hann M M 1995 Behavior of cholesterol and its effect on head group and chain conformations in lipid bilayers-a molecular dynamics study;Biophys. J. 68 164–170

    Article  CAS  Google Scholar 

  • Rovnyak G C, Kimball S D, Beyer B, Cucinotta G, Di Marco J D, Gougoutas J, Hedberg A, Malley M, McCarthy J P, Zhang R and Moreland S 1995 Calcium entry blockers and activators: conformational and structural determinants of dihydropyridine calcium channel modulators;J. Med. Chem. 38 119–129

    Article  CAS  Google Scholar 

  • Stouch T R 1993 Lipid membrane structure and dynamics studied by all atom molecular dynamics simulations ofhydratedphospholipid bilayers;Mol Simul. 10 317–345

    Article  Google Scholar 

  • Stouch T R, Ward K B, Altieri A and Hagler A T 1991 Simulation of liquid crystals: characterisation of potential energy functions and parameters for lecithin molecules;J. Comput. Chem. 12 1033–1046

    Article  CAS  Google Scholar 

  • Sundaralingam M 1972 Discussion paper: molecular structure and conformations of the phospholipids and sphingomyelins;Ann. N. O Acad. Sci. USA 195 324–355

    Article  CAS  Google Scholar 

  • Tiku P and Kothekar V 1988 Theoretical study on specificity and Molecular mechanism of action of calcium ion mediators;Curr. Sci. 57 1049–1058

    CAS  Google Scholar 

  • Triggle D J, Hawthorn M, Gopalkrishnan M, Minarini A, Avery S, Rutefedge A, Baugaleri R and Zheng W C 1991 Synthetic organics ligands active at voltage gated calcium channel;Ann. N. Y.Acad. Sci. USA 635 123–138

    Article  CAS  Google Scholar 

  • van der Ploeg P and Berendsen H J C 1982 Molecular dynamics of a bilayer membrane;J. Chem. Phys. 76 3271–3276

    Article  Google Scholar 

  • van der Ploeg P and Berendsen H J C 1983 Molecular dynamics of a bilayer membrane;Mol. Phys. 49 233–248

    Article  Google Scholar 

  • Venable R M, Zang Y, Hardy B J and Pastor R W 1993 Molecular dynamics simulations of a lipid bilayer and of hexadecane—an investigation of membrane fluidity;Science 262 223–226

    Article  CAS  Google Scholar 

  • Weiner S J, Kollman P A, Case D A, Singh U C, Ghio C, Alagona G, Profeta S and Weiner P 1984 A new forcefield for molecular mechanical simulation of nucleic acids;Am. Chem. Soc. 106 7650–784

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kothekar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, D., Kothekar, V. Conformation of nifedipine in hydrated 1,2-di-myristoyl-sn-glycero-3-phosphorylcholine bilayer molecular dynamics simulation. J. Biosci. 22, 177–192 (1997). https://doi.org/10.1007/BF02704731

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704731

Keywords