Skip to main content
Log in

Fractal differential equations and fractal-time dynamical systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Differential equations and maps are the most frequently studied examples of dynamical systems and may be considered as continuous and discrete time-evolution processes respectively. The processes in which time evolution takes place on Cantor-like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation of these systems requires an appropriate framework. A new calculus calledF α-calculus, is a natural calculus on subsetsF⊂ R of dimension α,0 < α ≤ 1. It involves integral and derivative of order α, calledF α-integral andF α-derivative respectively. TheF α-integral is suitable for integrating functions with fractal support of dimension α, while theF α-derivative enables us to differentiate functions like the Cantor staircase. The functions like the Cantor staircase function occur naturally as solutions ofF α-differential equations. Hence the latter can be used to model fractal-time processes or sublinear dynamical systems.

We discuss construction and solutions of some fractal differential equations of the form

$$D_{F,t}^\alpha x = h(x,t),$$

whereh is a vector field andD α F,t is a fractal differential operator of order α in timet. We also consider some equations of the form

$$D_{F,t}^\alpha W(x,t) = L[W(x,t)],$$

whereL is an ordinary differential operator in the real variablex, and(t,x)F × Rn whereF is a Cantor-like set of dimension α.

Further, we discuss a method of finding solutions toF α-differential equations: They can be mapped to ordinary differential equations, and the solutions of the latter can be transformed back to get those of the former. This is illustrated with a couple of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B B Mandelbrot,The fractal geometry of nature (Freeman and Company, 1977)

  2. A Bunde and S Havlin (Eds),Fractals in science (Springer, 1995)

  3. B J West, M Bologna and P Grinolini,Physics of fractal operators (Springer Verlag, New York, 2003)

    Google Scholar 

  4. K Falconer,The geometry of fractal sets (Cambridge University Press, 1985)

  5. K Falconer,Fractal geometry: Mathematical foundations and applications (John Wiley and Sons, 1990)

  6. K Falconer,Techniques in fractal geometry (John Wiley and Sons, 1997)

  7. G A Edgar,Integral, probability and fractal measures (Springer-Verlag, New York, 1998)

    MATH  Google Scholar 

  8. S G Samko, A A Kilbas and O I Marichev,Fractional integrals and derivatives — Theory and applications (Gordon and Breach Science Publishers, 1993)

  9. R Hilfer,Applications of fractional calculus in physics (World Scientific Publ. Co., Singapore, 2000)

    MATH  Google Scholar 

  10. K S Miller and B Ross,An introduction to the fractional calculus and fractional differential equations (John Wiley, New York, 1993)

    MATH  Google Scholar 

  11. K B Oldham and J Spanier,The fractional calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  12. R Metzler, W G Glöckle and T F Nonnenmacher,Physica A211, 13 (1994)

    ADS  Google Scholar 

  13. R Metzler, E Barkai and J Klafter,Phys. Rev. Lett. 82, 3563 (1999)

    Article  ADS  Google Scholar 

  14. R Hilfer and L Anton,Phys. Rev. E51, R848 (1995)

    ADS  Google Scholar 

  15. A Compte,Phys. Rev. E53, 4191 (1996)

    ADS  Google Scholar 

  16. G M Zaslavsky,Physica D76, 110 (1994)

    ADS  MathSciNet  Google Scholar 

  17. R Metzler, E Barkai and J Klafter,Physica A266, 343 (1999)

    Google Scholar 

  18. R Hilfer,J. Phys. Chem. B104, 3914 (2000)

    Google Scholar 

  19. K M Kolwankar and A D Gangal,Chaos 6, 505 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. J Levy Vehel and K M Kolwankar,Fract. Calc. Appl. Anal. 4, 285 (2001)

    MATH  MathSciNet  Google Scholar 

  21. K M Kolwankar and A D Gangal,Pramana — J. Phys. 48, 49 (1997)

    ADS  Google Scholar 

  22. K M Kolwankar and A D Gangal,Phys. Rev. Lett. 80, 214 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. K M Kolwankar and A D Gangal, Local Fractional Calculus: A Calculus for Fractal Space-Time, in:Fractals: Theory and applications in engineering edited by M Dekking, J Levy Vehelet al (Springer, London, 1999)

    Google Scholar 

  24. F B Adda and J Cresson,J. Math. Anal. Appl. 263, 721 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. A Babakhani and V Daftardar-Gejji,J. Math. Anal. Appl. 270, 66 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. M T Barlow,Diffusion on fractals, Lecture notes (Math. Vol. 1690, Springer, 1998)

  27. J Kigami,Analysis on fractals (Cambridge University Press, 2000)

  28. K Dalrymple, R S Strichartz and J P Vinson,J. Fourier Anal. Appl. 5, 205 (1999)

    Article  MathSciNet  Google Scholar 

  29. R S Strichartz,J. Funct. Anal. 174, 76 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. U Freiberg and M Zähle,Potential Anal. 16, 265 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. U Freiberg and M Zähle, Harmonic calculus on fractals — A measure geometric approach II (2000) Preprint

  32. A Parvate and A D Gangal, math-ph/0310047 (2003)

  33. A Parvate and A D Gangal,Calculus on fractal subsets of real line — II: Conjugacy with ordinary calculus, Pune University Preprint (2004)

  34. R R Goldberg,Methods of real analysis (Oxford and IBH Publishing Co. Pvt. Ltd., 1970)

  35. E Hille and J D Tamarkin,American Mathematics Monthly 36, 255 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  36. M F Shlesinger,Ann. Rev. Phys. Chem. 39, 269 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvate, A., Gangal, A.D. Fractal differential equations and fractal-time dynamical systems. Pramana - J Phys 64, 389–409 (2005). https://doi.org/10.1007/BF02704566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704566

Keywords

PACS Nos

Navigation