Skip to main content
Log in

Instantaneous frequencies of a chaotic system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The structure and geometry of high-dimensional, complex dynamical systems is usually hidden under a profusion of numerical data. We show that time-frequency analysis allows one to analyze these data regardless of the number of degrees of freedom. Our method takes snapshots of the system in terms of its instantaneous frequencies defined as ridges of the time-frequency landscape. Using the wavelet transform of a single trajectory, it can characterize key dynamical properties like the extent of chaos, resonance transitions and trappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Chandre, S Wiggins and T Uzer,Physica D181, 171 (2003)

    ADS  MathSciNet  Google Scholar 

  2. S Mallat,A wavelet tour of signal processing (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  3. C C Martens, M J Davis and G S Ezra,Chem. Phys. Lett. 142, 519 (1987)

    Article  ADS  Google Scholar 

  4. J von Milczewski and T Uzer, Mapping multidimensional intramolecular dynamics using frequency analysis, in: D L Thompson (ed.)Modern methods for multidimensional dynamics computations in chemistry (World Scientific, Singapore, 1998) pp. 190–200

    Google Scholar 

  5. J Laskar,Icarus 88, 266 (1990)

    Article  ADS  Google Scholar 

  6. J Laskar, inHamiltonian systems with three or more degrees of freedom, NATO ASI Series edited by C Simó (Kluwer Academic Publishers, Dordrecht, 1999) pp. 134–150

    Google Scholar 

  7. A Correia and J Laskar,Nature 411, 767 (2001)

    Article  ADS  Google Scholar 

  8. D Robin, C Steier, J Laskar and L Nadolski,Phys. Rev. Lett. 85, 558 (2000)

    Article  ADS  Google Scholar 

  9. L Mandel,Am. J. Phys. 42, 840 (1974)

    Article  ADS  Google Scholar 

  10. P J Loughlin,IEEE Signal Processing Lett. 4, 123 (1997)

    Article  Google Scholar 

  11. E Shchekinova, C Chandre, Y Lan and T Uzer,J. Chem. Phys. 121, 3471 (2004)

    Article  ADS  Google Scholar 

  12. T A Michtchenko and D Nesvorny,Astron. Astrophys. 313, 674 (1996)

    ADS  Google Scholar 

  13. A Askar, A E Cetin and H Rabitz,J. Phys. Chem. 100, 19165 (1996)

    Article  Google Scholar 

  14. L V Vela-Arevalo and S Wiggins,Int. J. Bifurcat. Chaos 11, 1359 (2001)

    Article  Google Scholar 

  15. N Delpratet al, IEEE Trans. Inform. Theory 38, 644 (1992)

    Article  MathSciNet  Google Scholar 

  16. http://www-stat.stanford.edu/~wavelab

  17. J Laskar, C Froeschlé and A Celletti,Physica D56, 253 (1992)

    ADS  Google Scholar 

  18. B V Chirikov,Phys. Rep. 52, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Unité Mixte de Recherche (UMR 6207) du CNRS, et des universités Aix-Marseille I, Aix-Marseille II et du Sud Toulon-Var. Laboratoire affilié à la FRUMAM (FR 2291).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandré, C., Uzer, T. Instantaneous frequencies of a chaotic system. Pramana - J Phys 64, 371–379 (2005). https://doi.org/10.1007/BF02704564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704564

Keywords

PACS Nos

Navigation