Exclusive processes at Jefferson Lab

Abstract

Mapping the transition from strongly interacting, non-perturbative quantum chromodynamics, where nucleon-meson degrees of freedom are effective to perturbative QCD of quark and gluon degrees of freedom, is one of the most fundamental, challenging tasks in nuclear and particle physics. Exclusive processes such as proton-proton elastic scattering, meson photoproduction, and deuteron photodisintegration have been pursued extensively at many laboratories over the years in the search for such a transition, particularly at Jefferson Lab in recent years, taking the advantage of the high luminosity capability of the CEBAF facility. In this talk, I review recent results from Jefferson Lab on deuteron photodisintegration and photopion production processes and the future 12 GeV program.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S C Pieper and R B Wiringa,Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

    Article  ADS  Google Scholar 

  2. [2]

    G Whiteet al, Phys. Rev. D49, 58 (1994)

    ADS  Google Scholar 

  3. [3]

    S J Brodsky and G R Farrar,Phys. Rev. Lett. 31, 1153 (1973);Phys. Rev. D11, 1309 (1975)

    Article  ADS  Google Scholar 

  4. [3a]

    V Matveevet al, Nuovo Cimento Lett. 7, 719 (1973)

    Google Scholar 

  5. [4]

    G P Lepage and S J Brodsky,Phys. Rev. D22, 2157 (1980)

    ADS  Google Scholar 

  6. [5]

    N Isgur and C Llewelyn-Smith,Phys. Rev. Lett. 52, 1080 (1984)

    Article  ADS  Google Scholar 

  7. [6]

    V L Chernyak and A R Zhitnitsky,JETP Lett. 25, 510 (1977)

    ADS  Google Scholar 

  8. [7]

    X D Ji, J P Ma and F Yuan, hep-ph/0301141

  9. [8]

    P V Landshoff,Phys. Rev. D10, 1024 (1974)

    ADS  Google Scholar 

  10. [9]

    A W Hendry,Phys. Rev. D10, 2300 (1974)

    ADS  Google Scholar 

  11. [10]

    D G Crabbet al, Phys. Rev. Lett. 41, 1257 (1978)

    Article  ADS  Google Scholar 

  12. [11]

    G R Courtet al, Phys. Rev. Lett. 57, 507 (1986)

    Article  ADS  Google Scholar 

  13. [11a]

    T S Bhatiaet al, Phys. Rev. Lett. 49, 1135 (1982)

    Article  ADS  Google Scholar 

  14. [11b]

    E A Crosbieet al, Phys. Rev. D23, 600 (1981)

    ADS  Google Scholar 

  15. [12]

    S J Brodsky, C E Carlson and H Lipkin,Phys. Rev. D20, 2278 (1979)

    ADS  Google Scholar 

  16. [13]

    A Sen,Phys. Rev. D28, 860 (1983)

    ADS  Google Scholar 

  17. [14]

    J Botts and G Sterman,Nucl. Phys. B325, 62 (1989)

    Article  ADS  Google Scholar 

  18. [15]

    A H Mueller,Phys. Rep. 73, 237 (1981)

    Article  ADS  Google Scholar 

  19. [16]

    A S Carrollet al, Phys. Rev. Lett. 61, 1698 (1988)

    Article  ADS  Google Scholar 

  20. [17]

    Y Mardoret al, Phys. Rev. Lett. 81, 5085 (1998)

    Article  ADS  Google Scholar 

  21. [17a]

    A Leksanovet al, Phys. Rev. Lett. 87, 212301–1 (2001)

    Article  ADS  Google Scholar 

  22. [18]

    J P Ralston and B Pire,Phys. Rev. Lett. 61, 1823 (1988)

    Article  ADS  Google Scholar 

  23. [18a]

    J P Ralston and B Pire,Phys. Rev. Lett. 65, 2343 (1990)

    Article  ADS  Google Scholar 

  24. [19]

    C E Carlson, M Chachkhunashvili and F Myhrer,Phys. Rev. D46, 2891 (1992)

    ADS  Google Scholar 

  25. [20]

    L L Frankfurt, G A Miller, M M Sargsian and M I Strikman,Phys. Rev. Lett. 84, 3045 (2000) M M Sargsian, private communication

    Article  ADS  Google Scholar 

  26. [21]

    P Jain, B Kundu and J Ralston,Phys. Rev. D65, 094027 (2002)

    ADS  Google Scholar 

  27. [22]

    G R Farrar, G Sterman and H Zhang,Phys. Rev. Lett. 62, 2229 (1989)

    Article  ADS  Google Scholar 

  28. [23]

    E Anciantet al, Phys. Rev. Lett. 85, 4682 (2000)

    Article  ADS  Google Scholar 

  29. [24]

    E C Schulteet al, Phys. Rev. Lett. 87, 102302 (2001)

    Article  ADS  Google Scholar 

  30. [25]

    S J Brodsky and G F de Teramond,Phys. Rev. Lett. 60, 1924 (1988)

    Article  ADS  Google Scholar 

  31. [26]

    B Kundu, J Samuelsson, P Jain and J P Ralston,Phys. Rev. D62, 113009 (2000)

    ADS  Google Scholar 

  32. [27]

    S J Brodsky and A H Mueller,Phys. Lett. B206, 685 (1988)

    ADS  Google Scholar 

  33. [28]

    G R Farrar, H Liu, L L Frankfurt and M I Strikman,Phys. Rev. Lett. 61, 686 (1988)

    Article  ADS  Google Scholar 

  34. [29]

    P Jain, B Pire and J P Ralston,Phys. Rep. 271, 67 (1996)

    Article  ADS  Google Scholar 

  35. [30]

    J Napolitanoet al, Phys. Rev. Lett. 61, 2530 (1988)

    Article  ADS  Google Scholar 

  36. [30a]

    S J Freedmanet al, Phys. Rev. C48, 1864 (1993)

    ADS  Google Scholar 

  37. [30b]

    J E Belzet al, Phys. Rev. Lett. 74, 646 (1995)

    Article  ADS  Google Scholar 

  38. [30c]

    C Bochnaet al, Phys. Rev. Lett. 81, 4576 (1998)

    Article  ADS  Google Scholar 

  39. [31]

    L L Frankfurt, G A Miller, M M Sargsian and M I Strikman,Nucl. Phys. A663, 349 (2000)

    ADS  Google Scholar 

  40. [32]

    L A Kondratyuket al, Phys. Rev. C48, 2491 (1993)

    ADS  Google Scholar 

  41. [33]

    V Yu Grishinaet al, Euro. J. Phys. A10, 355 (2001)

    ADS  Article  Google Scholar 

  42. [34]

    A Radyushkin, private communication

  43. [35]

    K Wijesooriyaet al, Phys. Rev. Lett. 86, 2975 (2001)

    Article  ADS  Google Scholar 

  44. [36]

    K Wijesooriyaet al, Phys. Rev. C66, 034614 (2002)

    ADS  Google Scholar 

  45. [37]

    D Abbottet al, Phys. Rev. Lett. 84, 5053 (2000)

    Article  ADS  Google Scholar 

  46. [38]

    M K Joneset al, Phys. Rev. Lett. 84, 1398 (2000)

    Article  ADS  Google Scholar 

  47. [38a]

    O Gayouet al, Phys. Rev. Lett. 88, 092301 (2002)

    Article  ADS  Google Scholar 

  48. [39]

    N Isgur, S Jeschonnek, W Melnitchouk and J W Van Orden,Phys. Rev. D64, 054005 (2001)

    ADS  Google Scholar 

  49. [39a]

    F E Close and N Isgur,Phys. Lett. B509, 81 (2001)

    ADS  Google Scholar 

  50. [39b]

    S Jeschonnek and J W Van Orden,Phys. Rev. D65, 094038 (2002)

    ADS  Google Scholar 

  51. [39c]

    F E Close and Q Zhao,Phys. Rev. D66, 054001 (2002)

    ADS  Google Scholar 

  52. [40]

    Q Zhao and F Close, private communication

  53. [41]

    Jefferson Lab Experiment E02-010, Spokespersons: D Dutta, H Gao and R J Holt

  54. [42]

    P Jain, private communications

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gao, H. Exclusive processes at Jefferson Lab. Pramana - J Phys 61, 837–846 (2003). https://doi.org/10.1007/BF02704452

Download citation

Keywords

  • Exclusive processes
  • quantum chromodynamics
  • perturbative quantum chromo-dynamics.

PACS Nos

  • 13.60.Le
  • 13.75.Cs
  • 24.85.+p
  • 25.10.+s
  • 25.20.-x