Skip to main content
Log in

The mobility principle: How I became a molecular biologist

  • Perspectives
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Attardi G, Naono S, Rouvière J, Jacob F and Gros F 1963 Production of messenger RNA and regulation of protein synthesis;Cold Spring Harb. Quant. Biol. 28 363–372

    Article  CAS  Google Scholar 

  • Avery O T, MacLeod C and McCarthy M 1944 Studies on the chemical nature of the substance inducing transformation of pneumococcal types;J. Exp. Med. 79 137–159

    Article  CAS  Google Scholar 

  • Beadle G and Tatum E L 1941Genetic control of biochemical reactions in Neurosppora;Proc. Natl. Acad. Sci. USA 27 499–506

    Article  CAS  Google Scholar 

  • Brachet J 1952Biochemical cytology (New York: Academic Press)

    Google Scholar 

  • Brenner S, Jacob F and Meselson M 1961 An unstable intermediate carrying information from genes to ribosome for protein synthesis;Nature (London) 190 576–581

    Article  CAS  Google Scholar 

  • Buckingham M E 1985 Actin and myosin multigene families: their expression during the formation of skeletal muscle;Essays Biochem. 20 77–109

    CAS  PubMed  Google Scholar 

  • Bussard A, Naono S, Gros F and Monod J 1960 Effet d’un analogue de l’uracile sur des propriétés d’une protéine enzymatique synthétisée en sa présence;C.R. Acad. Sci. Paris,250 4049–4051

    CAS  PubMed  Google Scholar 

  • Casperson V T 1941 Studien über den Einweissumsatz der Zelle;Naturwiss. 29 33

    Article  Google Scholar 

  • Cavalli L, Lederberg J and Lederberg E M 1953 An infective factor controlling sex compatibility inBacterium coli;J. Gen. Microb. 8 89–103

    CAS  Google Scholar 

  • Davern C I and Meselson M 1960 The molecular conservation of ribonucleic acid during bacterial growth;J. Mol. Biol. 2 153–160

    Article  CAS  Google Scholar 

  • Denoulet P, Edde B, Jeantet C and Gros F 1982 Evolution of tubulin heterogeneity during mouse brain development;Biochimie 64 165–172

    Article  CAS  Google Scholar 

  • Gros F and Gros Fse 1958 Rôle des acides aminés dans la synthèse des acides nucléiques chezE. coli;Exp.Cell. Res. 14 104–131

    Article  CAS  Google Scholar 

  • Gros F, Hiatt H, Gilbert W, Kurland C G, Risebrough R W and Watson J D 1961 Unstable ribonucleic acid revealed by pulse labelling ofEscherichia coli;Nature (London) 190 581–585

    Article  CAS  Google Scholar 

  • Grunberg-Manago M and Ochoa S 1955 Enzymatic synthesis and breakdown of polynucleotides: polynucleotide phosphorylase;J. Am. Chem. Soc. 77 3165–3166

    Article  CAS  Google Scholar 

  • Hoagland M B, Zamecnick P and Stephenson M L 1957 Intermediate reaction in protein biosynthesis;Biochim. Biophys. Acta 24 215–216

    Article  CAS  Google Scholar 

  • Hotchkiss R D 1960 Gene transformation principle and DNA; inPhage and the origin of molecular biology (eds) J Caims, G Stent and J D Watson (New York: Cold Spring Harbor Press) pp 180–200

    Google Scholar 

  • Jacob F, and Wollman E L 1961Sexuality and the genetics of bacteria (New York: Academic Press)

    Google Scholar 

  • Jacob F, Perrin D, Sanchez and, Monod J 1960 l’Opéron groupe de gènes à expression coordonnée par un opérateur;C.R. Acad. Sci. Paris 250 1727–1729

    CAS  PubMed  Google Scholar 

  • Kornberg A 1978 Aspects of DNA replication;Cold Spring Harbor Symp. Quant. Biol. 43 1–9

    Article  Google Scholar 

  • Kourilsky P, Bourguignon M F, Bouquet M and Gros F 1970 Early transcription control after induction of prophage lambda;Cold Spring Harb. Quant. Biol. 35 305

    Article  CAS  Google Scholar 

  • Lacks S and Gros F 1959 A metabolic study of the RNA-aminoacid complexes inE. coli;J. Mol. Biol. 1 301

    Article  CAS  Google Scholar 

  • Lwoff A 1954 Lysogeny;Bacteriol. Rev. 17 269–337

    Google Scholar 

  • Lwoff A, Siminovitch L and Kjelgaard N 1950 Induction de la production du bactériophage chez une bactérie lysogène;Ann. Inst. Pasteur (Paris) 79 815–859

    CAS  Google Scholar 

  • Marmur J and Doty P 1959 Heterogeneity in Deoxyribonucleic acid -I. Dependence on composition of configuration stability of deoxyribonucleic acids;Nature (London) 183 1427–1429

    Article  CAS  Google Scholar 

  • Meselson M and Stahl F 1958 The replication of DNA inEscherichia coli;Proc. Natl. Acad. Sci. USA 44 671–682

    Article  CAS  Google Scholar 

  • Monod J and Cohn M 1952 La biosynthèse induite des enzymes (adaptation enzymatique);Adv. Enzymol. 13 67–119

    CAS  Google Scholar 

  • Müller-Hill B, Crapo L and Gilbert W 1968 Mutants that make more lac repressor;Proc. Nat. Acad. Sci. USA 59 1259–1264

    Article  Google Scholar 

  • Naono S and Gros F 1960 Synthèse parE. coli d’une phosphatase modifiée en présence d’un analogue pyrimidique;C.R. Acad. Sci. Paris 250 3889–3891

    CAS  PubMed  Google Scholar 

  • Neidhardt C F and Gros F 1957 Metabolic instability of the ribonucleic acid synthesized byE. coli in the presence of chloromycetin;Biochim. Biophys. Acta 25 513–520

    Article  CAS  Google Scholar 

  • Pardee A, Jacob F and Monod J 1959 The genetic control and cytoplasmic expression of ‘inducibility’ in the syn-thesis of β-galactosidase byEscherichia coli;J. Mol. Biol. 1 165–178

    Article  CAS  Google Scholar 

  • Revel M and Gros F 1966 A factor fromE. Coli required for the translation of natural messenger RNA;Biochem. Biophys. Res. Commun. 25 124–132

    Article  CAS  Google Scholar 

  • Volkin E and Astrackan L 1957 RNA metabolism in T2 infectedE. coli; inSymposium on the chemical basis of heredity (eds) W D McElsoy and B Glass (Baltimore: Johns Hopkins Press) p. 686

    Google Scholar 

  • Watson J D and Crick F H C 1953 Molecular strucutre of nucleic acids: a structure for deoxyribose nucleic acid;Nature (London) 171 737–738

    Article  CAS  Google Scholar 

  • Yaniv M and Gros F 1969 Studies on valyl-tRNA synthetase and tRNAval fromEscherichia coli: III Valyl-tRNA synthetases from thermosensitive mutants ofEscherichia coli;J. Mol. Biol. 44 31–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gros, F. The mobility principle: How I became a molecular biologist. J. Biosci. 31, 303–308 (2006). https://doi.org/10.1007/BF02704102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704102

Keywords

Navigation