, Volume 65, Issue 5, pp 937–947 | Cite as

Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes

  • Ashok K. Ganguli
  • Tokeer Ahmad
  • Padam R. Arya
  • Pika Jha


Current interest in the properties of materials having grains in the nanometer regime has led to the investigation of the size-dependent properties of various dielectric and magnetic materials. We discuss two chemical methods, namely the reverse-micellar route and the polymeric citrate precursor route used to obtain homogeneous and monophasic nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3, PbZrO3 etc. In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route. These nanorods on decomposition provide a facile route to the synthesis of transition metal oxide nanoparticles. We discuss the size dependence of the dielectric and magnetic properties in some of the above oxides


Chemical synthesis nanoparticle transmission electron microscopy dielectric properties 


81.07.Bc 77.84.Dy 82.70.Uv 75.50.-y 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G H Haertling,J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  2. [2]
    R L Goldberg and S W Smith,IEEE Trans. Ultrason. Ferrolectr. Freq. Control. 41, 761 (1994)CrossRefGoogle Scholar
  3. [3]
    B Jaffe Jr., W R Cook and H Jaffe,Piezoelectric ceramics (Academic Press, New York, 1971)Google Scholar
  4. [4]
    K Uchino,Acta Mater. 46, 3745 (1998)CrossRefGoogle Scholar
  5. [5]
    O Auciello, J F Scott and R Ramesh,Phys. Today 51, 22 (1998)Google Scholar
  6. [6]
    S S Chandatreya, R M Fulath and J A Pask,J. Am. Ceram. Soc. 64, 422 (1981)CrossRefGoogle Scholar
  7. [7]
    F Selimi, S Komarneni, V K Varadan and V V Varadan,Mater. Lett. 10, 235 (1990)CrossRefGoogle Scholar
  8. [8]
    R Asiaie, W Zhu, S A Akbar and P K Dutta,Chem. Mater. 6, 123 (1996)CrossRefGoogle Scholar
  9. [9]
    I W Chen and X H Wang,Nature (London) 404, 168 (2001)CrossRefADSGoogle Scholar
  10. [10]
    M A Sekar, G Dhanraj, H L Bhatt and K C Patil,J. Mater. Sci. 3, 237 (1992)Google Scholar
  11. [11]
    KRM Rao, A V P Rao and S Komareni,Mater. Lett. 28, 463 (1996)CrossRefGoogle Scholar
  12. [12]
    TRN Kutty and R Balachandran,Mater. Res. Bull. 19, 1479 (1984)CrossRefGoogle Scholar
  13. [13]
    C K Kwok and S B Desu,J. Mater. Res. 8, 339 (1993)ADSGoogle Scholar
  14. [14]
    H Hirashima, E Onishi and M Nakagowa,J. Non-Cryst. Solids 121, 404 (1990)CrossRefADSGoogle Scholar
  15. [15]
    M P Pechini, US Patent No. 330697 (1967)Google Scholar
  16. [16]
    M Kakihana, M Arima, Y Nakamura, M Yashima and M Yoshimura,Chem. Mater. 11, 438 (1998)CrossRefGoogle Scholar
  17. [17]
    P R Arya, P Jha and A K Ganguli,J. Mater. Chem. 13, 415 (2003)CrossRefGoogle Scholar
  18. [18]
    P R Arya, P Jha, G N Subbanna and A K Ganguli,Mater. Res. Bull. 38, 617 (2003)CrossRefGoogle Scholar
  19. [19]
    P Kumar and K L Mittal,Handbook of microemulsions science and technology (Marcel Dekker, New York, 1999) part III, pp. 457–742Google Scholar
  20. [19a]
    L M Liz-Marzan and P V Kamat,Nanoscale materials (Kluwer Academic Publishers, London, 2003) p. 135Google Scholar
  21. [20]
    T Ahmad, G Kavitha, C Narayana and A K Ganguli,J. Mater. Res. 20, 1415 (2005)CrossRefADSGoogle Scholar
  22. [21]
    T Ahmad, K V Ramanujachary, S E Lofland and A K Ganguli,J. Mater. Chem. 14, 3406 (2004)CrossRefGoogle Scholar
  23. [22]
    T Ahmad and A K Ganguli,J. Mater. Res. 19, 2905 (2004)CrossRefADSGoogle Scholar
  24. [23]
    Y G Wang, W L Zhong and P L Zhang,Solid State Commun. 90, 329 (1994)CrossRefADSGoogle Scholar
  25. [24]
    J Junquera and P Ghosez,Nature (London) 422, 506 (2003)CrossRefADSGoogle Scholar
  26. [25]
    T Ahmad, R Chopra, K V Ramanujachary, S E Lofland and A K Ganguli,Solid State Sci. 7, 891 (2005)CrossRefADSGoogle Scholar
  27. [26]
    C B Azzoni, A Paleari and G B Parravicini,J. Phys. Condens. Matter 4, 1359 (1992)CrossRefADSGoogle Scholar
  28. [27]
    M O’Keefe and F S Stone,J. Phys. Chem. Solids 23, 261 (1962)CrossRefGoogle Scholar
  29. [28]
    J B Forsyth, P J Brown and B M Wanklyn,J. Phys. C21, 2917 (1988)ADSGoogle Scholar
  30. [29]
    T I Arbuzova, A A Samokhvalov, I B Smolyak, N M Chebotaev and S V Naumov,JETP Lett. 50, 34 (1989)ADSGoogle Scholar
  31. [30]
    K Muraleedharan, C K Subramanian, N Venkataramani, T K Gundu Rao, C M Srivastava, V Sankaranarayan and R Srinivasan,Solid State Commun. 76, 727 (1990)CrossRefADSGoogle Scholar
  32. [31]
    I Sledzinska, A Murasik and P Fischer,J. Phys. C20, 2247 (1987)ADSGoogle Scholar
  33. [32]
    G H Lee, S H Huh, J W Jeong, B J Choi, S K Kim and H C Ri,J. Am. Chem. Soc. 124, 12094 (2002)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Ashok K. Ganguli
    • 1
  • Tokeer Ahmad
    • 1
  • Padam R. Arya
    • 1
  • Pika Jha
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations