Skip to main content

Optically-driven red blood cell rotor in linearly polarized laser tweezers


We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and become twisted in hypertonic phosphate buffer saline and when trapped, experience an unbalanced radiation pressure force. The torque generated from the unbalanced force causes the trapped RBC to rotate. Addition of Ca++ ions in the solution, keeping the osmolarity same, makes the cell membranes stiffer and the cells deform less. Thus the speed of rotation of the red blood cells can be controlled, as less deformation and in turn less asymmetry in shape produces less torque under the radiation pressure resulting in slower rotation at the same laser power

This is a preview of subscription content, access via your institution.


  1. [1]

    A Ashkin, J M Dziedzic, J E Bjorkholm and S Chu,Opt. Lett. 11, 288 (1986)

    ADS  Google Scholar 

  2. [2]

    K Schutze, G Posl and G Lahr,Cell. Mol. Biol. 44, 735 (1998)

    Google Scholar 

  3. [3]

    M Zahn and S Seeger,Cell. Mol. Biol. 44, 747 (1998)

    Google Scholar 

  4. [4]

    A Clement-Sengewald, K Schutze, A Ashkin, G A Palma, G Kerlen and G Brem,J. Assist. Reprod. Genet. 13, 259 (1996)

    Article  Google Scholar 

  5. [5]

    M Zahn, J Renken and S Seeger,FEBS Lett. 443, 337 (1999)

    Article  Google Scholar 

  6. [6]

    C Bustamante, Z Bryant and S B Smith,Nature 421, 423 (2003)

    Article  ADS  Google Scholar 

  7. [7]

    J A Dharmadhikari, S Roy, A K Dharmadhikari, S Sharma and D Mathur,Opt. Exp. 12, 1179 (2004)

    Article  ADS  Google Scholar 

  8. [8]

    S K Mohanty, A Uppal and P K Gupta,Biotechnol. Lett. 26, 971 (2004)

    Article  Google Scholar 

  9. [9]

    A Ghosh, S Sinha, J A Dharmadhikari, S Roy, A K Dharmadhikari, J Samuel, S Sharma and D Mathur, arXiv:physics/0501099 v1, 19 Jan. 2005

  10. [10]

    S K Mohanty, K S Mohanty and P K Gupta,Opt. Exp. 13, 4745 (2005)

    Article  ADS  Google Scholar 

  11. [11]

    J A Dharmadhikari, S Roy, A K Dharmadhikari, S Sharma and D Mathur,Appl. Phys. Lett. 85, 6048 (2004)

    Article  ADS  Google Scholar 

  12. [12]

    M Khan, A K Sood, F L Deepak and C N R Rao,Nanomotors using asymmetric nanorods in optical trap (submitted)

  13. [13]

    P Galajda and P Ormos,Opt. Exp. 11, 446 (2003)

    ADS  Article  Google Scholar 

  14. [14]

    M Capitanio, G Romano, R Ballerini, M Giuntini and F S Pavone,Rev. Sci. Instrum. 73, 1687 (2002)

    Article  ADS  Google Scholar 

  15. [15]

    E Evans and Y C Fung,Microvasc. Res. 4, 335 (1972)

    Article  Google Scholar 

  16. [16]

    M Mela and S Eskelinen,Acta Physiol. Scand. 122, 515 (1984)

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khan, M., Mohanty, S.K. & Sood, A.K. Optically-driven red blood cell rotor in linearly polarized laser tweezers. Pramana - J Phys 65, 777–786 (2005).

Download citation


  • Rotation of red blood cell
  • optical tweezers
  • dual optical trap


  • 87.80.Cc
  • 87.83.+a
  • 87.80.Fe
  • 89.20.-a